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Abstract

The notion of anafunctor is introduced. An anafunctor is. roughly, a “functor defined up to
isomorphism™. Anafunctors have a general theory parallcling that of ordinary functors; they
have natural transformations, they form categories, they can bc composed. etc. Anafunctors can
be saturated. to ensurc that any objcct isomorphic to a possible value of the anafunctor is also
a possible value at the same argument object. The existence of anafunctors in situations when
ordinarily one would use choicc is ensured without choice; c.g., for a category which has binary
products, but not specified binary products, the anaversion of the product functor is canonically
definable, unlike the ordinary product functor that necds the axiom of choice. When the
composition functors in a bicategory are changed into anafunctors, one obtains ana-
bicategorics. In the standard definitions of bicategories such as the monoidal category of
modules over a ring, or the bicategory of spans in a category with pullbacks, and many others,
one uses choice; the anaversions of these bicategories have canonical definitions. The overall
effect is an elimination of the axiom of choice. and of non-canonical choices, in large parts of
general category theory. To ensure the Cartesian closed character of the bicategory of small
categorics, with anafunctors as 1-cells, one uscs a weak version of the axiom of choice, which is
related to A. Blass’ axiom of Small Violations of Choice (1979).

0. Introduction

In Category Theory, there is an underlying principle according to which the right
notion of “equality” for objects in a category is isomorphism. Let me refer to the
principle as the principle of isomorphism. According to the principle of isomorphism,
any object isomorphic to a given one should be able to serve the same categorical
purposes as the given one. Of course, the principle of isomorphism may be read as
a limitation on what properties of objects are to be considered in category theory; but
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the principle also carries with it the assertion that by so restricting the properties of
objects, we are not losing any essential clement of the situation.

Therefore, when singling out an object with a certain property, we should be
content with determining the object up to isomorphism only. Indeed, the categorical
operations defined by universal properties (products, exponentials, etc.) determine the
object-parts of their values at given arguments only up to isomorphism. The idea
behind the notion of anafunctor, the main new concept in this paper (see 2.1 (i)—(v)
below; a reference of the formm.n( ... )is to item n ( ... ) in Section m) is that the same
principle should extend to values of functors: their object-values are to be determined
up to isomorphism only.

General category theory in its usual form does not quite live up to the principle of
isomorphism; the ubiquitous use of the Axiom of Choice (AC) in general category
theory is a related fact. A simple example is at hand when, for a category C having
binary products of objects, we pass to the consideration of “the” product functor
P=()}x():CxC — C The definition of P requires the simultaneous choice of
a specific product (4 <— 4 x B—> B) corresponding to each pair (4, B) of objects.
To be sure, in most examples of a category € such a simultaneous choice can be made
without the AC; however, we want (o use the product functor in the theory for any
category C with binary products, without knowing anything further about C. Whether
or not an explicit choice of products is available, something of the canonicity of the
resulting entity (functor) is lost when we make a particular choice of products.
Actually, talking about the product functor becomes imprecise; there are, in general,
many possible product functors.

The general form of the above type of use of the AC is in taking “the” adjoint of
a functor on the basis of the representability of a family of Set-valued functors derived
from the given functor. Every time we use the Adjoint Functor Theorem to get an
adjoint, we use the AC in the described manner.

There are similar violations of canonicity and attendant uses of the AC in the
definitions of various concrete monoidal categories, and higher dimensional categori-
cal objects.

In this paper, [ propose a revision of the notion of functor, that of anafunctor, and
consequent revisions of certain higher dimensional concepts, that makes possible
a theory based more thoroughly on canonical constructions than ordinary category
theory, and specifically, that rectifies the violations described above of the principle of
isomorphism. The revisions are non-intrusive in the sense that category theory with
anafunctors is of the same general shape as with ordinary functors. It seems that there
is no limitation of the applicability of anafunctors in any context where functors are
used. The resulting theory avoids Choice to a large extent (although not completely;
see below), and still has the same general form as classical general category theory. If
one employs the full Axiom of Choice, the new theory reduces to the classical one.
Without the Axiom of Choice, we have a product anafunctor P =( }x( ):CxC - C
defined canonically on the basis of C having binary products. The adjoint of a(n)
(ana)functor, an anafunctor, is given canonically once the condition mentioned above
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on representability is fulfilled. Anafunctors have natural transformations, which are
the arrows of a category as usual; categories with anafunctors and natural transforma-
tions form a bicategory. We have anabicategories, anamonoidal categories, with basic
theories similar in outline to those of their usual counterparts.

Whereas “anafunctor™ is a generalization of “functor™ a certain specialization of the
notion of “anafunctor”, “saturated anafunctor” is the one that should be regarded as
the finished form of the concept; an ordinary functor is (usually) not a saturated
anafunctor. Saturated anafunctors (1.1 (vi)) satisfy the analog of Leibniz’s principle of
substitutability of equal for equal: if an object in the codomain category of the
saturated anafunctor is isomorphic to a value of the anafunctor, then it is itself a value
of the anafunctor at the same argument, “in a uniquely determined way ”. It turns out
that saturated anafunctors are sufficient; there is a canonical way of “saturating”™ any
anafunctor, the result of which, a saturated anafunctor, is isomorphic (via a canonical
natural isomorphism) to the given anafunctor.

The most important difference between using anafunctors and using functors is
a result of the fact that the category Ana (X, A) of (small) anafunctors between two
fixed small categories X and A is not small (unless X or 4 is empty). However, under
the assumption of a certain weak consequence, here called the Small Cardinality
Selection Axiom (SCSA), of the Axiom of Choice, Ana (X, 4) is equivalent (in fact, in
the strong sense) to a small category. Thus, the SCSA ensures the Cartesian closed
character of the bicategory of small categories with anafunctors and natural trans-
formations (with “Cartesian closed” meant in the natural bicategorical sense). The
SCSA is closely related to Blass’ axiom [3] of Small Violations of Choice (SVC),
another weak choice principle.

There is a well-known and important approach to category theory relative to
a largely arbitrary topos. See {2, 9, 16, 17]. The theory uses the formalism of indexed
categories [9, 17], or alternatively and essentially equivalently, that of fibrations
f1.2]. Category theory done internally in & is a part of indexed category theory over
&. Indexed category theory over & may use the axiom of choice externally. For
instance. in [17], a form of the Initial Object Theorem is proved, and from this, an
appropriate form of the Adjoint Functor Theorem is inferred, by the same kind of use
of the AC as the one that goes into constructing the product functor mentioned above.

The approach of the present paper is, in a sense, orthogonal to that of indexed
category theory: neither approach does what the other does, but they can be com-
bined to work together. When a topos lacks the necessary AC, the product functor
mentioned above for an internal category with products (where the mere existence of
products, rather than their specifiability, is assumed internally) does not exist inter-
nally, and will not exist for the externalization, an indexed category, of the internal
category. However, the present paper’s approach will provide an internal anafunctor
in place of the product functor without assuming Choice in the topos. In fact, the
development of the present paper, can be relativized to any topos. In [15], anafunctor
theory will be put into the context of indexed category theory over a topos, and
a connection will be established with stacks and stack completions. It will be shown
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that a suitable variant of the SCSA, one that is equivalent to saying that internal
categories have internal stack-completions, will ensure that the bicategory of internal
categories, internal analunctors and natural transformations is Cartesian closed.

The present paper is only the beginning of the development of “anafunctor theory™.
Let me briefly indicate an area of category theory where anafunctors are relevant. This
1s the general (or universal) algebra of structured categories. The usual kinds of
structured categories (lex categories, regular categories, (elementary) toposes (in this
case, use only isomorphism 2-cells). and many more) form locally finitely presentable
bicategories. The latter have a theory formally similar to that of locally finitely
presentable categories of [6]. This theory has only partly been codified at the present
time, but various key elements of it, such as the theory of bicategorical {(indexed or
weighted) limits (see, e.g., [18]). have been clarified. The sequel [13] will deal with
locally finitely presentable bicategories and related matters by employing anafunctors,
giving more canonical answers to existence questions than the usual theory;
and avoiding the AC. I now give two indications, to be worked out in [13], why
anafunctors are useful for a “canonical” version of the general algebra of structured
categories.

One may maintain that, when dealing with a category C with finite products, it is
not necessary to invoke the product functor ( ) x( ):Cx C — C;after all, all that this
does is to pick a particular product for each argument-pair, and we have the
experience that in most cases this is not necessary. However, if we want to make the
theory of categories with finite products (fp categories) a part of the algebra of
structured categories along the lines hinted above, then the product functor is forced
on us. In this theory, C induces a functor (a restricted representable functor)
C:FP* — Cat on the opposite of the bicategory FP; of the finitely presentable fp
categories to the bicategory Cat of small categories, and the above product functor is
the value of € at the 1-cell [X] — [Y.Z] in FP;; here, [X] is the fp category freely
generated by the object X, similarly for [Y.Z]. and the arrow is induced by the
mapping X — Y x Z.(The mapping C — C is the basic identification of the objects of
a locally finitely presentable bicategory with a Cat-valued functor. The reader will be
familiar with the one-dimensional analog of the described constructions; replace FP;
will Ring;, the category of finitely presentable commutative rings with 1, replace Cat
by Set, take a ring R in place of C, take x o be the multiplication in R, and the above
with refer to the multiplication-opcration { )-( ):Rx R — R.) In brief, the point of
view of the bicategorical algebra of structured categories necessitates the considera-
tion of something like the product functor. We have mentioned that anafunctor
theory is capable of providing the nceded entity in a canonical fashion.

Another example for the use of anafunctors is as follows. Consider the notion of the
free structured category .7 (G) of a given kind generated by the graph G. For the sake
of a convincing example, let us talk about categories with finite limits and finite
colimits (without any further restriction) as the given kind. Suppose G is a finite graph.
In this case. .7 (G) has an explicit description, consisting of iterated formal limits and
colimits, starting with the generators; in particular, certainly, there is no need for
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Choice in the construction of .# (G). (Andre Joyal has recently given a beautiful theory
of just this free construction, and its enriched generalizations.) However, to verify the
universal property of .# (G). against all maps ¢:G — C into a category C with finite
limits and colimits, in the usual theory we do need some form of the AC. In fact, we are
required to construct a functor F:.7 (G) — C preserving finite limits and colimits and
satisfying the initial conditions given by ¢. The construction of F requires a series of
choices of limits and colimits in C, which cannot be done without Choice. The use of an
anafunctor in place of F eliminates the need of the AC, and in fact makes F canonical.

Of course, the last example is a crucial one for the general algebra of structured
categories; in this theory, we would not want to do without free objects such as .7 (G).

Let me turn to remarks on the set-theory used in the paper.

The set-theoretic foundations used in this paper are “minimal”, and probably the
reader will have no problem following the paper even if he skips these (brief)
preliminaries.

We work in a constructive set-theory with sets and classes. For the sake of
definiteness. we take as our foundations the Godel-Bernays (G—B) axioms for sets
and classes [ 7]. without the AC, and without the Axiom of Regularity (Foundation),
and we employ intuitionistic predicate logic to deduce consequences of the axioms.
{We could accommodate ur-elements, but to do so would require some explanations
that we do not want to give; thus, all things in our theory are classes, and some classes
(precisely those that are elements of some class) are sets; the axiom of extensionality is
assumed in an unrestricted form.) We do not use Grothendieck universes.

The use of the adjective “small” will, as usual, signify that the entity it qualifies is
a set. Thus, a small class is the same thing as a set.

A category A 1s given by a class of objects Ob(A4), and a class Arr(A) of arrows, with
further data as usual. Thus, we do not make the blanket assumption that a category
has small hom-sets; if it does. it is said to be locally small. A small category has both
Ob(A4) and Arr(A4) sets; of course, Arr(4) being a set implies that Ob(A) is one as well.
A small category can be regarded as a single set (e.g., as a tuple (|4], Arr(4), ... )), and
we may talk about the class (and eventually, the category) of all small categories.

Note that a category isomorphic to a small category is small (by the Axiom of
Replacement).

Within G-B, one cannot talk about the category of all functors X — A4 for two
fixed, but arbitrary categories X, 4; there are no collections whose members are proper
classes. Of course, there is no problem when the categories X, 4 are small, or even
when just X is small (since in the latter case functors X — 4 are (may be regarded as)
sets). However, within the framework of the formal base-theory G-B, we may
contemplate metacategories; an example is FUN (X, 4), the metacategory of all
functors X — 4 and natural transformations. Formally, a metacategory is given by
predicates (formulas) Ob(X, P), Arr(f. P), Dom( f, X, P), Codom( /. X, P), Comp ( . g.
hP) of the base-theory (in our case, G—B), with the free variables shown, all
ranging over classes, together with the assumption that, for a fixed value of the
parameters P, the obvious equivalents of the category axioms (which become first
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order formulas, having only P as free variables, built up of the given predicates) hold.
The said assumption may be a consequence of an assumption C(P) on the parameters
P. In the case of Fun (X, A), P is X. A [although a category X is given by classes |X|, Arr
(X), ..., these can be combined. although somewhat artificially, into a single class; if
we do not want to do this, P will be a longer tuple, listing all the data-classes of both
categories X, A4 ], and C(P) is the assumption that X, 4 are indeed categories. Of
course, the idea of a metacatcgory Is just one instance of a family of meta-concepts
similarly fashioned from a formal concept such as “category”. One can, e.g., talk about
CAT, the meta-2-category of all categories, functors and natural transformations; Cat
is the 2-category of small categories. functors and natural transformations.

Let me note that I will usually drop the “mcta™ prefix from constructs such as
meta-functor, meta-natural transformation, etc.

Although [5] does not mention a formalized base-theory in which the exposition is
made, it is rather clear that a class-set theory is meant such as G-B; no universes are
employed. On the other hand, the explicit base-theory in [11] is Zermelo—Fraenkel
(ZF) set theory, a theory of sets without class-variables. One universe (a set U with
appropriate properties) is used, and the word ‘small” is reserved for members of U. [11]
uses “class” in a somewhat non-standard manner; classes in [11] are non-small sets.

Our base-theory is like that of [5]; in particular our categories and the categories in
[5] may be large (classes); the word “small” is used here in agreement with [5];
however, [5] does not mention “metacategories”. The "metacategories™ of [11] are
our categories. Qur metacategories are introduced on the same principle as those of
[11], but the difference in the base-theories makes the meanings of the term different.

The use of the prefix “ana™ has been suggested by Dusko Pavlovic. He noted the use
of “pro-" in category theory (profunctor, proobject), and noted that in biology, the
terms “anaphase”™ and “prophase™ are used in the same context.

At a time when the work on this paper had essentially been completed, Robert Paré
told me that he had had related ideas in the 1970°s, and he had lectured about them at
a meeting in New York in 1975, although he had not published his work.

Some time after the first version of this paper was written, I was informed that
a special case of the notion of anafunctor, and of the notion of natural transformation
of anafunctors, the case when the domain category is 1, the terminal category, have
been introduced in [ 10], under the name of “cliquc™ and morphism of cliques. In {10],
cliques are used for certain special purposes; beyond the definition of cliques and their
morphisms, there is essentially no overlap between [10] and this paper. For more
precise references, see toward the end of Section 1 of this paper.

1. Anafunctors

Let X and A be categories. An anafunctor F with domain X and codomain A, in
notation F:X—— A, or just simply F: X — A.is given by the following data 1. (i), (ii)
and conditions 1. (iii)~(v):
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1. (1) A class |F|, with maps a:1F| —» Ob(X) (“source”), t:|F| - Ob(d4) (“target”).
|F| is the class of specifications; s € |F| “specifies the value 1(s) at the argument a(s)”.
For X € X (that is, X € Ob(X)), we write |[F| X for the class {s € |F|:a(s) = X}, and
F (X)) for t(s); the notation FX) presumes that s e |F| X.

(i) For each X, YeX, xe|F|X, ve|F|Y and f: X - Y(e Arr(X)). ap arrow
Fo (f):Fux) > F(Y)in A.

(i) For every X € X, |F| X is inhabited.

(iv) Forall X e X and xe|F| X, we have F, (Ix) = 1, 4.

(v) Whenever X, Y. Ze X, xel|F|X,yel|F|Y,ze|F|Z, and

FY

X ° 57, then FEX ° S FZ
I F_(h)

{a circle in a diagram means that the diagram commutes), 1.e.,

With any given X € X, A €A, we put [F| (X, A) 5 {xe|F|X F(X)=A].

The anafunctor F: X — A 1s locally small if all the classes |[F|(X,A) (X € X, A€ A)
are sets. [t 1s weakly small if the classes |[F| X are all small (X e X); thus, “weakly small”
implies “locally small”. Finally, F is small iff it is weakly small, and the cateogry X is
small. Notice that if F is small, then it is given by a set of data, beyond the data for 4;
in particular, we may consider the class of all small anafunctors with a fixed codomain
A, an arbitrary (not necessarily small) category.

IfF:X—>A,andse|F| X,te|F|X.then F, (1y):F,X —» F,X isan isomorphism,
with inverse F, (1x). In particular, the value of F at X, F(X), is determined up to
isomorphism.

Any (ordinary} functor F:X — A is, essentially, an anafunctor, by putting
|F| = Ob(X). o(X) = X, t(X) = F(X) (thus |F| X = { X }). with the obvious specifica-
tion of the rest of the structure.

A more abstract way of defining the concept is as follows. A discrete category is one
in which all arrows are identities; an antidiscrete category is one in which for any pair
(U.V) of objects, there 13 exactly one arrow U — V. A discrete (antidiscrete) opfibra-
tion is one in which every fiber is a discrete (antidiscrete) category. A discrete
opfibration is a functor G:S — B such that for any a:4 — Bin B and Se G~ (A),
there is exactly one arrow s:S — T with some T € G~ '(B) such that G(s) = a; an
antidiscrete opfibration is a functor G:S§ — B such that for any a:4 — B in B,
Se G '(A)and T € G~ }(B), there is exactly one arrow 5:S — T such that G(s) = a.
Now,
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1*. An anafunctor F: X — A may bhe given by a span

- |F

LTy (1)

X A

of functors in which Fy is an antidiscrete opfibration that is surjective on objects.

Indeed, with F: X — A4 being an anafunctor in the original sense, we let [F| be the
category whose object-class is what was |F| above, whose arrows f:x — y are the
same as arrows f:g(x) — a(y) in X, with the obvious composition; F, is the obvious
forgetful functor (clearly an antidiscrete opfibration); Fy maps sto z(s)and f:x — yto
F. (f). Conversely, if we have an anafunctor in the new sense, we put the object-class
of |F| for |F| in the old sense, 6(x} = Fy(x), 7(x) = F(x), and for /X — Y in X, x,
velF| with Fo(x)= X, Fo(y)=Y.weput F_ (f)= F.(f) for the unique f:x — y

for which Fy(f)="f.

2. Example. Suppose the category 4 has binary products; that is, for every A, B € A4,
there is at least one product diagram

C

/ \ (1)

A4 B .

Then we have the following anafunctor P:Ax A — A. [P} consists of all product
diagrams of the form (1}, for s the diagram in (1), a(s}) = (A, B) and z(s) = C. In the
formulation of 1*, | P| is the category of all product diagrams, where arrows are given
as in (2) below. In other words, for (4, B) e 4 x A, | P|((A4, B)) is the class of all product
diagrams (1), with the given 4, B, but all other data variable; for s € | P|((A, B)) given by
(1), Py((A4,B)) = C. For se|P|((A, B)) given by the data in (1), and s" e |P|((A", B")),
given by data as in (1) but primed, and for (f.g):(A,B) — (4, B’) (€ Arr(4 x A)),
P, o((f,9):C — C'1is the unique i making the diagram

C
A/ \B
fl h Lg (2)
A B’

commute; the universal property of the product consisting of the primed data ensures
that P, o(( f.g)) is well-defined. It is fairly clear that conditions 1.(iii)—(v) are all
satisfied.
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The above-defined P is the product-anafunctor for the category A, “replacing” the
product-functor (A4, B) - A x B. Whereas the definition of the latter requires a non-
canonical choice of a particular product 4 x B for each pair (A4, B} of objects, and thus,
in general, for its definition, the product-functor needs the AC, the product-anafun-
ctor does not involve any non-canonical choice, in particular, it does not need the AC.
Of course, it is still to be demonstrated that the product-anafunctor does enough of
the job of the product-functor, for it to be a reasonable replacement. At any rate, it will
turn out (see below) that if the product-functor exists, then the product-anafunctor is
isomorphic to it, by an appropriate notion of (natural) isomorphism.

An anafunctor F:X—> A is saturated if it satisfies the following additional condi-
tion:

1. (vi) (unique transfer) Whenever s € |F| (X, A). and p: A— Bis an isomorphism (in
A). then there is a unique r € |F| (X, B) such that = F_,(1y).

With F an anafunctor, and continuing with the above notation, if |F|(X, A) is
inhabited, then A4 is a possible value of F at the argument X. Note that the possible
values of F at a given X form a subclass of an isomorphism class of objects in 4; if F is
saturated, they form a complete isomorphism class.

An anafunctor determines its values at least up to isomorphism; a saturated one
determines its values exactly up to isomorhism. Among anafunctors, the ordinary
functors and the saturated anafunctors represent two extremes; our ultimate goal here
is to promote the use of the saturated anafunctors as the ones that stand for the point
of view that objects (in this case the values of the anafunctor) should be determined
exactly up to isomorphism, just as they are when they are determined by a universal
property.

2. Example (continued). The product anafunctor P:4x A — A is saturated, as it is
immediately seen.

Note that if F: X — A issaturated. X € X, s € |[F| (X, A), then for any B € 4 we have
the bijection

|F|(X.B) — 1Iso (A, B)
[—— Fs.l(l,\')- (2)

This bijection is not canonical; it depends on the choice of s € |F| (X, A). Nevertheless,
it follows that for a saturated anafunctor F: X — A, if 4 is locally small, then so is F,
and if both X and A4 are small, then so is F.

Assume F:X — A4 is a saturated anafunctor. We have a form of “isomorphic
transfer” not only for the values but also for the arguments of F. More precisely,
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3. For F:X — A a saturated anafunctor, a pair of isomorphisms (‘/'Xi Y,
g:A—— B) induces a bijection |F|(X,A)——|F|(Y.B), defined by st>1t <=
F\r(f) =4d.

Let us fix /- X—"> Y and g:A—— B. Let s€|F| (X,A); 1 claim that there is
a unique t € |[F| (Y, B) such that F, (/) = g. Once this is shown, for any t € [F| (Y, B)
there is a unique s € |[F| (X, A) such that F, ((f~!) =g~ ', thatis, F, (f) = g, and the
definition above indeed gives a bijection s +— ¢,

Letroe|F|Y,se|F| (X, A), re|F| (Y, B), and consider the commutative triangle

4 .
&U)

o o B

%)

FY

o

consisting of isomorphisms. It follows that saying that F,(f) = g is equivalent to
saying that the triangle

Fo L0 o B
£

fy

commutes. But by 1.(vi), for any ¢: A——B, there is a unique ¢ satisfying this latter
condition, that is, F,_,(1,) =g (F., (/)"

With X* denoting the groupoid of all isomorphism in X, and similarly for 4%, we
have,

4. With F:X — A a saturated anafunctor, the mapping in 3 defines a functor
X*xA* - SET:

X*xA*—> SET:

(X, A) > |F|(X,4)

(,/ﬁg)l l.w-w

(Y,B) > |F|(Y,B)

Equivalently,
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5. An anafunctor as in 1* is saturared iff the induced functor |[FI¥ — X* x A¥ is
a discrete opfibration.

v
A natural transformation h: F — G of anafunctors X:GZI A is given by

6. () afamily <h,,:F,X = G, X)ycx.cirx. < ay Of arrows in 4 such that

(i) (naturality) for every X — Y in X, and for every se |F| X, te |G| X, uel|F|Y,
v €|GlY, the square

Fof
EA’_—\L%EIY

h\"l \Lhm 3)

3 Y ——mm—>
G X ————>GY

commutes.

An  equivalent definition is this. Given anafunctors (X «'"'—IF|L+ A),

Gy ~ G . . -
(X «<—|G|— A)in the style of 1*, a natural transformation from F to G is the same
as a natural transformation h in the usual sense as in the following diagram:

&}

o
G,
G

Continuing with the notation of 6, note that if s, ue |[F| X, 7, ve|G| X, then h, , is
determined by h, ,: this is because of the communtativity of

£,
X—————>F X

h\,l

e )
GX

, G.X
1)

Wl —~

|,

G

I

Suppose we have a family {(s; € |F| X}, t; € |G| X;)>i; such that forall X e X, X = X,
for some iel. Suppose we have <h;:F (X;) = G, (X;)>;.; such that the naturality
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condition (3) holds for these data, that 1s,

E)
F.X, ' > F X,
h, o h (3
G X, >G X
' G, () i

foranyi jel,and [ X; —» X;.

7. Under the stated conditions, there is a unigue h: F — G such that h,, = h; for all
iel

The rest of the data for /i are determined by appropriate instances of the diagram
(4). ;

For any anafunctor X— A, we have the identity natural transformation
l,:F — F, defined by (1), 5 . (1x): I, X - F.X. Naturality of I, is a conse-
quence of 1.(v). As a consequence of 7, h: F - F is equal to 1, iff by =1, x for all
XeX selF|X.

Composition k - h:F — H of h, k in

F
_
lllG
x ¥

1k
H

is defined in the expected manner: for s e |F| X.ue |H| X, (k> h), .. F,. X — H,X is the
composite of FSXL’% G,Xl"ﬂ H, X, with any 1 € |G| X;

6. (i) (k- h) ki wohg o

S 6 def

for one thing, such ¢ exists; for another, with arbitrary r, t' € |G| X, the commutative

diagram

F.x > F.X

n l lh ,
G, (1

G,X ZAS, G.X

k’ ”l l"’/‘ i

H, X > 1,X

l//,,\: H, (1)

i
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shows that (k *h),., is well-defined (independent of the choice of t). The naturality
(6.(i1)) of k h so defined is seen immediately; and so are the associativity of the
composition of natural transformations, and the identity character of the identity

natural transformations.

2. Example (continued). Q:A4 x A—— A qualifies as a product-anafunctor if, for any
A. Be A, there is a mapping associating with any s € |Q] (4. B)) a product diagram

/ (AB)\

such that, for any s € |Q| (4. B)), t € 1Q| ((A'.B"),u: A - A, b: B — B, we have that

o O(A.B)
A/ \
(’l O, (a.b)

\ /

0,(4'.B")

lh

commutes. Certainly, any product-functor, making a choice of each product, will, as
an anafunctor, satisfy the stated condition. But notice that any such Q is isomorphic to
P:withse |Pl{((A.B)) as in (1), and t € |Q] ((A, B)), we can put h, .- C — Q,(A, B) to be
the unique isomorphism i that makes

o OUAB)
& ~

commute; i so defined is an isomorphism P— Q as it is easily seen. In particular, if
the product-functor exists, it is isomorphic to the product-anafunctor (which always
exists).

Given categories 4, X with X small, Ana(X,4), Sana(X.4) denote the categories of
all small anafunctors, respectively small saturated anafunctors, X — A; arrows are the
natural transformations, with composition as given above; Sana(X, A4) is a full sub-
category of Ana(X,A). When 4 and X are both small, we might still have anafunctors
X — A that are not small; however, as we said above, all saturated ones are small, and
thus belong to Sana(X, 4). We should point out that if 4 has an isomorphism class of
objects which is not small (a very common occurrence), and F: X — A takes a value in
such an isomorphism class, then F cannot be saturated and small at the same time; the
category Sana(X, A) is of importance mainly when both 4 and X are small. Let us also

A
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point out that, for small X and 4, Ana(X, A), and even Sana(X, A4), cannot be shown to
be equivalent to a small category; however, a weak version of the AC will suffice for
this last conclusion; see later.

For convenience of expression, we will talk about the metacategories ANA(X, A),
SANA(X, 4) of all anafunctors, resp. saturated anafunctors X — 4, with natural
transformations as arrows. The notations ANA, (X, 4), SANA (X, 4), ANA, (X, A),
SANA (X, A4), referring to “locally small”, resp. “weakly small” anafunctors, are
self-explanatory. The latier are full subcategories of ANA(X, A4).

Recall the identification of any functor G:X — A with an anafunctor; the latter is
obviously weakly small. This identification extends to natural transformations, and
we have a fully faithful functorj = j, ,: FUN(X,4) - ANA,, (X, 4), to which we will
refer as an inclusion.

It is easily seen that if 1: F — G is a natural transformation, then k is an isomor-
phism in ANA (X, A4) iff each component h, , is an isomorphism (in 4) (for &~ ! defined
by (h 1), =(h) ,wegeth '“h= 1, h h!=1;because the s, s-components of
both composites are identitics).

Given anafunctors Xi A, a renaming transformation h: F—— G is a system
= ChIX, AT v conm dcoms  Of  bijections  h[X.A] = (s — §):IF|(X, )= |G
(X.A) preserving the effect of the anafunctors F, G on arrows: F, .(f) = G:.(f)
whenever /1 X — X'isanarrowin X, A e A, s € |[F|(X, A4), s € |F|(X', A). Continuing
the above notation,

7. Every renaming transformation induces a natural isomorphism

h: F—= G for which h,, =14 (s€|F|(X,A)); condition (3') holds because of the
assumption on effect on arrows (in general, h,, = G (1x) (se|F| X, t €|G| X)). We
now will see that for saturated anafunctors, natural isomorphisms and renaming
transformations are in a bijective correspondence.

Suppose that F,G € SANA(X,A4), and h:F—— G. Let us fix X € X. Note that the
isomorphism /i in particular ensures that any possible values 4, B of F, resp. G, at
X are isomorphic; hence, the possible values of F and those of G at X are the same. Let
A be any common possible value at X. I claim the following:

8. For any se |[F|(X, A), there is a unique t € |G|(X, A) such that h,, = 1,4.

Indeed, let so € |F|(X,A), t;€|G[(X, A), and consider, with any s e [F|(X, 4) and
t €|G|(X, A), the following commutative diagram of isomorphisms:

\U IU

A

> A
F\'“ K (1\) o lGu W l\)
—> A

A

h

Nt
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This implies that h,, = 14 iff

commutes; the last condition determines G, ,(1x) in terms of (4. ty and) s; by unique
transfer (1(vi}), there is a unique ¢ with this property.
In this argument, we used that G was saturated; using also that F is so, we get

9. For h:F—> G in SANA(X.4), XeX, A€A., the condition h_;=1, for
se|FIX, A). s |G| (X. A) establishes a bijection (s v §): |F| (X, A)— |G| (X, A) for
which F_ (f) = G/ f) holds for all {: X - Y.se|F|X.telF|Y.

Therefore by 7 also, we have the following.

9. For F. Ge ANA(X, A), the natural isomorphisms h: F—— G are in a bijective
correspondence with renaming rransformation h: F— G.

Let us emphasize (in view of the lack of AC) that a functor ®:C — D is an
cquivalence of (meta)eategories if there exist a functor ¥ : D — C and natural isomor-
phisms x:1,—— Y&, §: 1,—— @Y. Note that if the functor @:C — D is full and
faithful, and there exists a function ¥:Ob(D) — Ob(C) together with a function
D — f, assigning an isomorphism f,: D— ®¥D to each object D € D (for which
we say that @ is uniformly essentially surjective), then @ is an equivalence; in fact, there
is a unique way of making ¥ into a functor ¥ :D — C and defining the isomorphism
%:1o—— PP so that {Bp>p becomes an isomorphism f3: lp,— @¥, and a¥ = ¥§,
fP =da

10. Let X, A be small categories. The inclusion i:Sana(X,4) — Ana(X,A) is an
equivalence of caregories.

Proof. Let F € Ana(X,A), we define F* e Sana(X, A), called the saruration of F, as
follows. For X € X, A € 4, we let Sy, be the set of all pairs (s € |F| X, ;L:FSX; A).
Let ~ be the relation on Sy 4 defined by

(s, 1) ~ (s ')y <= N -/ commules.
def NS =/l
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It is immediately seen that ~ is an equivalence relation. We put |[F*| (X, A) to be
Sx.4/ ~ . the set of equivalence-classes [s.u] of elements (s, u) of Sy 4. Given
a=[s,)]elF*|X,b=[t,v]e|F*|Yand /X — Y,FZ,(f)is defined so as to make
the outside rectangle in the diagram

#

AT )

X —> F'Y
Fo )

Bl = FX —> F.Y =
%(1.\) F;/'(:\
EX — FY
FA0

commute. The commutativity of the rest of the diagram shows that the definition is
independent of the choice of the representatives. It is easy to see that 1 (iv), (v) hold for
F* so defined. To see 1(vi) for F*, let a = [s, ] €|F*| X, and let p: F* X — B; we
want that there is unique b = [r,v] with B = F/ X and F¥,(1y) = p; this means that

FX—t—>F'x

e (1\-)l l" (5)

FX ——> B

should commute; we can take b = [, p = 1] to satisfy this; clearly, the commutativity
of (5) implies that (t,v) ~ (s, p i), which shows the required uniqueness.

We give gy :F—— F* (F € Ana (X.A)) as an application of 7. We let [ = |F], {(s;,
ticr = (s, [8, Ly D) Dscn with X = a(s), and abbreviating [s, 1,,] as 5, we let, for
selFIX, (np)s: F(X) » FF(X) be the identity 1, y. It is immediate that n; is
a natural transformation (by 7; (3') now holds), and that it is an isomorphism. This
completes the proof of 10.

Let us note the effect of the saturation functor ( )*:Ana(X,4) — Sana(X,A4) o
arrows. Given h:F —» G in Ana(X,A4), a=[s,)]e F* X, b=[1,v]e G* X, h“,, is
defined so as to make the outside rectangle in

L
hu h

G X

h

B /v
B
= EX > F
%u\) \
-




[e5]
n
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commute; the rest of the diagram shows that the definition of b, is independent of the
choice of the representatives; it is easy to sec that h* so defined is a natural
transformation F* — G¥*. Further, it 1s easily seen that ( )* so defined is a functor.
The functor ( }* is the same as the one obtained from i and {#; > in the remark before
10, denoted by ¥ there.

Given a weakly small anafunctor F:X — A, using the Global Axiom of Choice
(GACQ), the existence of a class-function that picks an element of every inhabited set,
we let (X e X)+— syelF|X be a choice-function, and we consider the functor
F':X - 4 for which F(X)=F (X). F(f:X > Y)= F  (/):Fx>FY (it is
immediate that F' is a functor). We also have, with any F as above, a natural
isomorphism «: F — jF' (with j the inclusion of functors in anafunctors) defined by

(i Fo X > F X)) 5 (F  (x) FoX - F X))

Making the choices involved simultaneously for all F € ANA,. (X.A), we obtain, using
the GAC, that

11. (GAQ). The inclusion FUN(X.4) > ANA (X, A) is an equivalence of meta-
categories, when X is small, the inclusion Fun(X,4) — Ana(X,A) is an equivalence of

categories.

11 is reassuring since it says that we have not strayed from the notion of functor too
far.
It should be noted that, without any choice,

1. Any small anafunctor into Set is isomorphic to a functor; for any small category X,
the inclusion Fun(X, Set) - Ana(X, Set) is an equivalence of categories.

Proof. Let F: X — Set be a small anafunctor. An element of F at X € X is a family
X = {Xy ). 4y such that x;e F X, and (F, (1)} (x,) = x, for s, t € |[F| X. Clearly, any
component x of x determines the whole of x, and in fact, any pair{s € |F| X,u € F X))
determines a unique element x at X for which x, = «; let us denote x by [s, al.

Given F. we define the functor F: X — Set as follows. We put F(X ) equal to the set
of all elements of F at X. We define, for /2 X — Y, the function F(f): F(X) —» F(Y)
by putting F( f) (x) equal to the unique element yat Y for which y, = F, (/) (x,) for
any (equivalently, for some) pair (se|F| X, ue|F|Y). It is easily seen that F is
well-defined as a functor F:X — Set by these stipulations. We have the natural
isomorphism x.: F— F whose components (x), y:F.X — FX are given by
(2p)y. x(a) = [s.a]. This completes the proof.

Many concrete categories (categories of algebras, of topological spaces, etc.) that
have a faithful forgetful functor to Set share the property of Set stated in 11’; [ do not
see how to make a general-enough statement of this state of affairs.

Another, rather obvious, case of this situation is in the next statement.
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117, The anafunctor F is isomorphic to an ordinary functor when the domain category of
F has finitely many objects.

(By “S is finite”, we mean “there are a natural number n and a surjection
li:i<n! > §7) Note, however, that we cannot say that the inclusion Fun(X,
A) — Ana(X,A4) is an equivalence even when X 15 1, the termmdl category.

We turn to the composition of anafunctors. Let X 4% M be anafunctors.
There is a natural composition G - F:X — A4. also written just GF, an anafunctor,
defined as follows. For X € X, wc let [GF| X be the class of all pairs

a={e|F|X,re|GI{F. X))
(in other words,

6FIX = L j61F,x)) (6)

selF| X
and for « as displayed, (GF), 5 G,(Fy(X)). Note that if also M € M,
GFI(x. M) =~ L 1FI(x. 4) %G (4. M),

Aed
For the action of GF on arrows, with « as above and with b= (uelF|Y,
vel|GHF, X)), and with /: X — Y, we put (GF), »( /) = G, (F,,(f)). Itis immediate
that GF 1s an anafunctor.

It is immediate that the composition of weakly small anafunctors is weakly
small. If F and G are given by the spans (X « |[F} — A), (4 « |G| » M), then the
composite GF is given by the “composite span” (X « [F|x 4|G| - M).

We can extend composition to a functor

def

ANA(X, 4) x ANA (4, M)—— ANA(X.M) (7)

in a natural way. With data as in

F /
X Ih a4 Tk Tm (8)
G 7 T

first we define - (h, 1), denoted Ih. by
(Ih)u.h =1, z.'(hs.ll);

here,a = (se|F| X, te|I|(F, X)), b = (ue|G| X, v € |I|(F, X)), the naturality of Ih 1s
immediate.

In defining (1, k), denoted kF, we make use of the fact that, to specify a natural
transformation of anafunctors, it suffices to specily “enough” components of it, with
the appropriate naturality conditions satisfied (see 7). Accordingly, let a=1(se |F| X,
te|l|(F, X) b=(se|F|X, uelJ|[(F, X)), we let (kF),,:(IF),(X) — (JF)(X) be

(kF) koo I, Fo(X) — J, F(X): the (needed partial) naturality of kFis 1mmed1ate.

b gor
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Next, we need to verify that thus we have defined functors
() T:ANA(X.A) - ANA(X, M),
F ( ):ANA(A, M) - ANA(X. M),

we leave the task to the reader.
Finally, we need that

JF—1" 516

kfl lkc

JF— 5 JG
Jh

commutes. With ecvaluating I F at (se|F|X, te|I|[(F, X)), J G at (ue|G|X,
re|lJG X)), I+G at(uelGl X, well|(G, X)), and J- F at (se|F| X, re|J|(F; X)),
the diagram becomes

Ly (k)
LEX > 1,G,.X
. ks
JEX > J,G,X
)

whose commutativity is an instance of the naturality of k. By 7 again, this suffices.
It is well known (Proposition 1, IL3, p. 37 in [11]) that what we did above
determines uniquely the functor (7).
It is clear that, for X and 4 small, (7) restricts to a composition-functor

Ana(X,4)x Ana(4,M)— Ana(X,M). (7)

Let us turn to the question of associativity of composition of functors. With anafunc-
tors

x4 s
we find the associativity isomorphism
%= oy gy HGF)—=— (HG)F
given (see 7') by the renaming transformation % for which

a[ XS] ((s, 1) 1) = (s,{t, 1))

whenever X e X, se |[F| X, te|G|(F, X),ue\H|(G,F(X)), S = H,G, F(X). It is easy
to see that 2y ¢y 1s natural in each of F, G and H, and that the pentagonal
associativity coherence diagram ((1.1) (A.C.) in [ 1], pp. 5 and 6) commutes. With the
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identity functor 1,:4 — A4 as an anafunctor, we have the left and right identity
isomorphisms

AL F— F,  ppill, =]

(see (8)) defined by (4p)y. x1ax = 14 v (s €|F] X), and similarly for pg. Both 2, and py
are natural in F, and they satisfy identity coherence ((1.1) (1.C.) loc.cit.).
We have the ingredients of a metabicategory (see loc. cit.).

12. Conclusion. Categories, anafunctors between them, and natural transformations
hetween the latter form, with the given notions of composition, a meta-bicategory
ANACAT. The identification of ordinary functors with anafunctors provides an inclu-
sion i:CAT —» ANACAT (CAT is the meta-2-category of categories, functors and
natural transformations), which is the identiry on objects, and locally fully faithful.

We also have the bicategory AnaCat of small caregories, small anafunctors between
them, and all natural transformations between the larter. The 2-category Cat of small
categories has a locally fully faithful inclusion into AnaCat, which is an equivalence of
bicategories provided the Axiom of Choice holds.

G.M. Kelly gave us once the healthy advice to use simple terminology in higher
dimensional category theory. For instance, “functor” of bicategories should mean
“homomorphism of bicategories™; a functor between bicategories cannot reasonably
mean anything but a mapping that respects the whole bicategory structure and not
Just the reduct to the category structure. Similarly, “product” in a bicategory should
mean what is usually called “biproduct™. Also, I say “equivalence of bicategories” for

“biequivalence”. (As a reminder, I note that by an equivalence of bicategories . and
</, I mean a pair of functors v:z o/ such that GF ~1,, FG ~ 1, the latter
equivalences meant in the metdblcategorles of endofunctors of .7, .7, respectively. As
usual, we say of a single functor F:.% — ./ that it is an equivalence if it can be
expanded with further data to form an equivalence.) Maybe 1 am carrying Kelly’s
advice farther than he intended; 1 hope no confusion will arise.

Small categories with saturated anafunctors between them also form a bicategory
named SanaCat, which is equivalent to AnaCat. This is a consequence of 10, together
with the fact that, in the proof of 10, the isomorphisms #, are obtained uniformly from
F not just within a given Ana(X, A), but also uniformly in the variables X, 4.

In some detail, SanaCat has the following structure. With reference to the satura-
tion-functor

() =()E,y:Ana(X.M) — Sana(X,M)
(see 10), a composition-functor in SanaCat,

# = s Sana(X, A) x Sana(4. M) - Sana(X, M),
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is defined by G «* F = (G~ F)*, and correspondingly for natural transformations. The
associativity isomorphisms

afp gu:H*(G*F)y > (H-*G)-*F
are determined so as to make

#
1/‘,(} I

H"(G'F) > (H'G)'F
i T
Ho(G"F) (Ho" G)oF
ol Tos
Ho(GeF) — > (HeG)oF
commute.

Using 10, we can see that
12'. The inclusion mapping SanaCat — AnaCalt is an equivalence of bicategories.

It is more natural to make the totality of small categories, with saturated anafun-
ctors between them, an anabicategory in which composition is an anafunctor; see
Section 4.

Terminal object and product 1n a (meta-)bicategory are defined as expected by
universal properties defining the result of the operation up to an equivalence rather
than isomorphism. Placing ourselves in a fixed (meta)bicategory, we say that
A<~ C-"> Bis a product diagram if, for any object D, the functor

(n{ —),7’( —)):Hom(D,C) - Hom(D, A) x Hom(D, B)
D15 C s (nfin'f)

is an equivalence of categories. As usual, 4 «— A4 x B> B denotes, ambiguously,
a product diagram on (A4, B).

T is a terminal object if, for any 4, Hom(A4,T) — 1, with 1 the one-object,
one-arrow category, is an equivalence of categories.

We say that a bicategory is Cartesian if it has a terminal object and binary products.

13. AnaCat and ANACAT are Cartesian

In fact, the Cartesian structure in ANACAT (AnaCat) is computed as in CAT (Cat).
The Cartesian closed nature of Cat, the (2-)category of all small categories is
a fundamental fact. What prevents AnaCat from being Cartesian closed is that, for A,
X small categories, Ana(X,4) is not neccessarily equivalent to a small category. In
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Section 5, we will see that a weak form of the AC will ensure this, and hence the
Cartesian closed nature of AnaCat. Here, we give the relevant facts that hold without
further set-theoretical hypotheses.

We first formulate a characterization of anafunctors of the form F: X xM — A,
(“bi-anafunctors”) analogous to Proposition IL.3.1 in [11]. Suppose we have

classes |F| (X, M)) (X eX. M e M),
objects Fy(X,M)eA (se|F| (X, M),

arrows F, (f, M): F(X, M) — F (Y, M),

FoulX,9): Fo(X, M) —» FAX.N) (X > Y, g:M > N, se[F| (X, M)),
telFI((Y,M)), uelF[(X.N)))

such that

(i) for any X eX, the data define an anafunctor Fy=F(X, — )M - A
(|Fx]| M = |F| ((X, M)), etc.), and similarly for F( — ,M): X — A,

(i) forany /X - Yin X, g:M — N in M, and for all appropriate specifications,
the diagram

; FAX.8)
F X, M) > F(X,N)
E M )l lﬁ. ASN)
E (M) Fo(Y.g) > LGN

commutes. Then we have a unique anafunctor F:XxM — A having as sections
F (X, —), F( —,M) the given data.

I leave the verification to the reader.

Given categories X, A, we consider the metacategory ANA (X, A), and the evaluation

anafunctor

e=ey XxANA(X 4) > 4 {8)
determined as follows. For X € X, F ¢ ANA(X, 4),

lel (X, F)) = IFIX; (8
for se|F| X,

e (X, F) 5 FX);
with alsoue|F|Y,f X - Y,

e u( L 1) i Foulf)
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With h: F = G (e Arr (ANA(X,4))). t € |G| X,

es.r((Xah)) d—?—f hs.t;
the diagram
e (X.h)
e (X, F) . —> ¢,(X,G)
e S F )l le, LG
e, (V.F) ————>¢,(1.G)
is identical to
. h\‘/
F(X) —> G, (X)
S )l iG,,\(f)
F,(Y) —————> G.(Y)

"y

which commutes by the naturality of i This shows (by the characterization of
“bi-anafunctors”™) that e is an anafunctor.
Whereas ¢y 4 1n (8) is a metafunctor, for X small, its restriction

ev . X x Ana(X,4) —» A 9)

to Ana(X, A), the category of small anafunctors X — A, is a functor (denoted by the
same symbol as the metafunctor in (8)).

In propositions 14, 15, 16 and 17 below, X, Y are small categories, A is an arbitrary
category.

14. ¢ = ey, (see (9)) induces an equivalence of categories

¢ = ¢ (Xx(—)):Ana(¥, Ana(X.4))— Ana(X x ¥,4).

ef

15. The inclusion
i:Fun(¥, Ana(X,4))—— Ana(¥, Ana(X,A4))

is an equivalence of categories.
Note that 15 implies that Ana(X,4) shares the property of Set given in 11",

16. There is an isomorphism
¥ :Fun(Y, Ana(X,4))— Ana(X x Y, 4)
of categories for which = i~ ¢, with i and ¢ from 15 and 14.
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Proof of 14, 15 and 16. The functors in these assertions form the diagram

Ana (Y, Ana (X, 4)) u > Ana (X < ¥, A)

)

Fun (Y, Ana (X, A))

We will define y, show the properties given in 16, and show that ¢ is full and faithful.
Since i is full and faithful, both assertions 14 and 15. will follow. We will have that, in

(9), all three functors are equivalences of categories, one in fact is an isomorphism.
Given H € Ana(Y, Ana(X,A)), X eX, Y € ¥, we have

les(Xx H)|((X,Y)) = {(X.,a).s):ae|H|Y,se|H, Y| X}
(remember that |e|(X,H,Y)) =|H,Y|X) and
(e (XX H))x.us(X,Y)=(Hs Y s X.

Let also K € Ana(Y, Ana(X,A)). A natural transformation h:e{(Xx H) - ¢ (X x K)
has components

Hyx. a0, wxmn (Ha Y ), X = (K, Y) X,

Starting with h, we define j:H — K by specifying the natural transformation
Jes:Ha Y — K, Y by making (ju,)s, :(H, Y), X — (Ky Y), X equal to x4 ax.mn-
This works, and j is the unique natural transformation H — K mapped by the functor
(9) to h; this amounts to the fact that ¢ is fully faithful.

Given the small anafunctor G:Xx¥ — 4, we define H=y ! (G), H:¥Y -
Ana(X, A4) as follows. With Y ¥, H(Y):X — A is the (obviously small) anafunctor
G(—,Y) thatis

[H(Y)| X =G| (X, Y)), (H(Y)); X =G,(X,Y)
and
H(Y ) (/) =G (£ Y) (selH(Y) X, telHY) X, /X - X');

moreover, for g:Y — Y’ H(g): H(Y) —» H(Y') is the natural transformation for
which

(H(g))s,t = Gs,r(ng)-

Conversely, given any functor H: ¥ — Ana (X, A), the listed equalities define a unique
small G:X x Y—— A; in other words, ¥ is a bijection of the object-classes of the two
categories in 16. If g: G — F, then  ~'(g) = h: H — K for h defined by

(hY)x,t:gs.t (SEIGI(X,Y),[E'F{(X, Y))
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(here, G, Fe Ana(Xx ¥, 4), H =4 '(G), K =y '(F)), and the mapping g — h is
a bijection Nat (G, F)— Nat(y ' G,y ' F). This defines the isomorphism y of 16.

To show the isomorphism Y ~i>¢, for a functor H:Y — Ana(X,4), and
G = y(H), we exhibit an isomorphism ay:e(X x H) = G. Calculating e (X x H) in
this case, we get

le - (Xx H)[((X, Y), 4) = {(X.Y).5):s € |G| (X, Y), 4)}.
We can define the renaming transformation &: e« (X x H)—— G by defining
A[(X,Y), AL e (X x H)| (X, Y), A)— |G| (X, Y), 4)
as
(X,Y),s) » s
The corresponding natural isomorphism oy e (X X H)— G has
@) exvias = Loy (10)

We need to see that oy is natural in H € Fun(¥, Ana(X, A4)). Because of (10), naturality
means that for H, KeFun(¥Y, Ana(X,4)), j:H —» K, h=o(j)., =y '(j),
selHIY)| X, te|K(Y)| X, we have

hx vro axrin = Lo (HY ) X — (KY), X)),
But this equality is true; both sides are equal to (jy)s.,.

This completes the proof.

We also arrive at the conclusion mentioned after 15: If K:¥ — Ana(X,A) is an
anafunctor, we have a functor H: ¥ - Ana(X, 4) isomorphic to it; H is obtained from
G = ¢+ (X x K) as above. In particular, the anafunctor H(Y):X — A has

H(Y)| X = {(@s):aelK| Y, se KV} X};
the “uncertainty” from K is absorbed into the values of H.
Here is a rather special, but useful, result.
17. When the category X has finitely many objects, the functor
12():Ana(¥, Fun(X,4)) » Ana(¥, Ana(X,A))
induced by the inclusion 1:Fun(X,4) - Ana(X, ) is an equivalence of categories.
Proof. Since 1 is full and faithful, it is immediate that so is 1= ( ). To show that 1o( )is

uniformly essentially surjective on objects, it suffices to show that the composite with
the equivalence ¢ of (9),

@°(=( )):Ana(¥, Fun(X,A4)) - Ana(Xx ¥, A4),
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is so. Let G:Xx¥—— 4. Define F:¥—— Fun (X,A) as follows. Put |F| Y =
e Gl (X.Y); for aelF Y, FAY)(X) 5 Gux)(X,Y); for x:X — X', Fu(Y)
(%) & Guxyraxy (6, Y) (note that a(X)e |G| (X.Y)), a(X)elG| (X',Y)) for
y:Y > Y, ae|F|Y, a' €|F|Y’, the components of the natural transformation

F,.(f):F,(Y)—> F,(Y’) are defined as
(qul'(.f))X d;—? Ga{X?.;l'(X)(Xa }’)3 Gu(,\')(X’ Y) hnd GLI'(X)(X’ Y/)

Itis easy to check that F is an anafunctor; the only point where the finiteness of | X| is
used is the inhabitedness of the set |[F|Y = [[y.v|G| {(X, Y)); as a finite product of
inhabited sets, it is inhabited.

We need to exhibit a natural isomorphism h:(p (1> ( )) (F)— G. But (¢p=(°( ))
(F)=e>(Xx1(F)) has

le=(Xx t(F)(X, Y) = {(X.a), X):a€|F|Y]
and

(e (XX (F)hix.arx (X, Y) = F(Y)(X)(= G5, (X, Y))
Thus, we may define h by

ht(X‘uLXLa(XD = 1(;,,@,4& Y)s

7 ensures that h is well-defined.

When in 16, we put X = 1, we note the isomorphism 1 x ¥ = ¥, and we write 4 for
Ana (1,4) (we may call 47 the category of small anaobjects of A), we obtain the
isomorphism Ana(¥,4) = Fun(¥.A ") of categories. In other words, (small) anafun-
ctors ¥ —» A may be identified with ordinary functors from the same domain ¥ into
the category 4™ of (small) anaobjects of the codomain A4, and this identification
extends to natural transformations. This shows that the notien of anafunctor and that
of natural transformation of anafunctors can be reduced to the case when the domain
category is 1. This fact was suggested by the referee.

When in 14, we put both X and Y equal to 1, we obtain the equivalence 4"~ ~ A4 ™.
In fact, writing s :A*"—— A" for a (the) quasi-inverse of the equivalence
¢:AT—— A" given in 14, and 5,:4 — A" for the inclusion functor 4 =~ Fun
(1,4) — Ana(l,4), we have an idempotent monad (( )*, u, n) on the bicategory
AnaCat (both “idempotent” and “monad™ understood in the suitable bicategorical
sense); this fact will be explored in [15]. Further, in [15], it will be shown that 4~ is
a stack-completion of A; the full explanation of this fact requires putting anafunctors
into the context of indexed category theory.

As I mentioned in the Introduction, the construction of the category A™ is also
given in [10], where 4" is named the category of cligues of A4; see [10, Chapter 1,
Section 1]. The general properties of cliques and A are not developed in [10]; 47 is
used in [10] for purposes different from those of this paper.

Written out explicitly, 4™ is the following category. An object A of A" (a clique, or
a small anaobject of 4) is given by an inhabited set | 4|, an | A|-indexed family (A, ), < 4
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of objects A, of 4, and an assignment of an isomorphism A, . A;— A, to each pair
(s,1) of elements of S such that A, , =1, and 4,,~ A, = 4, whenever s, 1, ueS.
A morphism h: 4 — A’ is a family

h=<he:As = Ay >.\'e\.4\‘.\"6\/~1'\

such that

for all appropriate values of the parameters.

By a (not necessarily small) anaobject of 4, we mean a (not necessarily small)
anafunctor 1 — A4; we will use (in Section 3) a similar notation in relation to
anaobjects in general as we did above for small anaobjects; for a general anaobject A,
|A| may be proper class.

2. Adjoint anafunctors

Anafunctors provide solutions without introducing non-canonical choices to exist-
ence problems when data are given by universal properties. The best example for this
is the existence of an adjoint anafunctor when the “local existence criterion” is
satisfied.

I«‘
Given the anafunctors X GZ A, we say that F is a left-adjoint to G (F— G)1f we have,
forany X eX, AeA. se|F| X, ve|G| A a bijection ¢, ., mapping fto g as in

Fx—"s4

(1)
/Y'—g—> G.A

between 4 (F; X, A) and X(X, G, A), which is natural in X and A4 in the expected sense:
forany YeX, re|F|Y and h: X — Y in addition to the above data, in

we have ¢, (f> Fgh) = ¢, .(f)~h, and similarly for data in 4.
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We leave it to the reader to check that this is the same as the standard internal
definition in the metabicategory ANACAT: the existence of #:1y - GF and
£:FG — 1, such that

F(GF) ———————> (FG)F (GF)G ———Z=———> G(FG)

NN

where the o’s are the appropriate associativity isomorphisms. In particular, if FG,
and ' = F, G’ = G, then F'-{G'; and if F- G, F'- G, then F' = F.

Let X <A be an anafunctor (in particular, G may be an ordinary functor), and
X € X. We say that the triple (Be 4, u€|G|B,n: X — G,B)is good for X if it has the
universal property that for any (4€A, ve|G|A, g:X — G, A) there is a unique
f:B > Awithg =G, ,(f)°n X <% 4 satisfies the condition of local existence of a left
adjoint if for every X € X, there is at least one good triple for X.

G . - )
1. Assume that the anafunctor X «—— A satisfies the condition of local existence of a left
adjoint. Then there is a (canonical) anafunctor F:X — A which is left adjoint to G.

Proof. We define F: X — A as follows. For any X € X, |F| X is the class of all good
triples for X. If s = (B,u, n) € [F| X, F(X) = B.1falsot =(C,v,0)e |F|Y,g: X - Y,
then F, (g) is the unique f: B — C such that

X—'>G.B
gl o lG,,‘,(f )
Y—7—> G,C
The bijection ¢, (see (1)) is as follows. If s = (B, u, n)e|F|X and ve|G|A, for

f:F,X — A, the corresponding g: X — G, A4 is g = G, ,(f)°n. The remaining details
are similar to the ones in the basic theory of adjoint functors (see [11]).

When G is a functor, F constructed above is a saturated anafunctor. Indeed, given

s=(B, B, )€ |F| X and 1: B—=— C, the condition for t = (C, C, 6) € |[F| X to satisfy
F, (1x) = u is that the diagram

»1/7 GB
X lGﬂ
O\A GC
commutes, which determines 0.
Let us also note that if X, 4, G are all small, then so is F.
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The example in 1.2 is, of course, a special case of 1, which is the main source of
naturally occurring anafunctors.

Another special case of 1 says that any functor, or even anafunctor, which is fully
faithful and essentially surjective has a quasi-inverse anafunctor; thus it is an equiva-
lence (without the axiom of choice) in the sense of the metabicategory ANACAT. We
call an anafunctor which is an equivalence in the sense of ANACAT an anaequivalence
of categories. F:X—— A is fully faithful if for every X e X and Y € X, for some
(equivalently,for all) s e |[F| X, re |F| Y, the mapping F, ,: X(X,Y) » A(F, X, F, Y)is
a bijection. The same F is essentially surjective if for all A € A4, there is X € X and
se|F| X such that A = F, X. We have

2. Any fully faithful and essentially surjective (ana)functor is an anaequivalence of
categories.

By 1.11” we have the following:
2. The inclusion A — A" (= Ana (1, 4)) is an anaequivalence.

Completeness properties of functor-categories depend, in the usual treatment, on
non-canonical choices. Assume I, X and A4 are categories, and A4 has I-indexed limits.
Then the proof that the functor category Fun(X, 4) has I-indexed limits proceeds by
picking particular limits in 4 of the I-indexed diagrams in A4 obtained by evaluating
the given I-indexed diagram in Fun(X, 4).

For the case when the category I has finitely many objects, we can avoid the choices.
In fact, in this case the metacategory ANA(X, A) of anafunctors is better than the base
category A; it has specified limits (given as a function with arguments the I-diagrams in
A) even if A is not assumed to have specified limits. We will have results concerning
arbitrary small limit types I; see propositions 6 and 7 below, and also the last section
of the paper.

3. Suppose that the small category I has finitely many objects, and the category A has
I-indexed limits. Then AN A(X, A} has specified I-indexed limits.

Proof. For simplicity of notation, we show why ANA(X,4) has specified binary
products if 4 has binary products; the general case is only notationally different (but
also see 4 below). Given F, G € ANA(X,A4), we define F x G e ANA(X, A) as follows.
We put

IFXG|X = {(se|F| X,te|G| X,F,X <—A-L— G,X):(r.7) is a product in A).

For ae|F x G| X as displayed, (Fx G), X = A. If also &' € |F x G| X’ with similar
ingredients,and f: X — X',(F x G), ,(f)is the arrow g in the following commutative
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diagram:

71N

F.X GX

f:mf)l ° lg© lf;,,m

F.X' G.X'

A

A!

I leave it to the reader to define the projections F «— F x G- G, and to check
the universal property of the product.
We have the following variant of 3.

4. Suppose that X, A and I are small categories, and I has finitely many objects. Assume
that A has I-indexed limits. Then Ana(X, A) has specified I-indexed limits.

Proof. By 1, we have Lim:4’ (= Fun(l,4)) — A, an anafunctor right adjoint to
A:4 — A’ Since 4 is small, Lim is (can be taken to be) small; thus, the adjunction
A— Lim lives in the bicategory AnaCat. As any bicategory, AnaCat has a representa-
ble functor to ANACAT, represented by any object of it:

Ana(X, — )= AnaCat(X, — ):AnaCat —» ANACAT

(as explained before, we mean a homomorphism of bicategories when we talk about
a functor of bicategories). As any functor of bicategories, Ana(X, — ) preserves any
adjunction in its domain. Thus, we have the adjunction

Lim*
Ana(X, Fun(l,4)) = 7~ Ana(X,A4), 2

—
A*

where Lim*, A* are the functors Ana(X, Lim), Ana(X, 4), resp. We have the equi-
valences

Ana(X, Fun(f,4)) ~ Ana(X, Ana(l,A4))

1
17

~ Ana(l, Ana(X,A4)) ~ Fun(l, Ana(X, 4)).

T 1

14 15
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Composing them with (2), we get
Fun(l, Ana(X.4)) — 7~ Ana(X,A).

Going through the above equivalences, one can check that A is isomorphic to
A:B — B' for B = Ana(X, A). Thus, up to isomorphism, Lim” is the desired limit-
functor.

The conclusion of 4 holds, in particular, for 4A¥ = Ana(l, A).

Of course, the similar result for colimits is a consequence, by passing to the opposite
category. But also for other finitary categorical operations defined by universal
properties, we have similar conclusions, at least for 4*. E.g.,

5. Suppose that the small category A is Cartesian closed. Then A*, the category of small
anaobjects of A (a category anaequivalent to A; see 2'), is also Cartesian closed, and in
fact has specified finite products and exponentials.
Proof. An exponential diagram on a pair (X, Y) of objects in 4 is a diagram of the form
e
/ \ 3)
X w
such that (p, g) is a product, and e satisfies the usual universal property of the
evaluation morphism of an exponential (think of
Xy —— sy
7N
X y!
the definition is that for any

Z——)Y

PR
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such that (p', ¢') is a product, there is a unique commutative diagram of the form

zZ—2 >y

N

X W
N s L )
X W'
72—y

Of course, a category with finite products is Cartesian closed iff there exists an
exponential diagram on any pair of objects.)

If 4 abbreviates (3), we indicate the components of 4 by putting the subscript 4 to
the corresponding symbol in (3); e.g., W, for the object W in (3), etc.

Let A, B be anaobjects of 4. Define the anaobject B* as follows. Let |B*| be the set of
all (s, u, 4) such that s € |A|, u € |B|, and 4 is an exponential diagram on (A4,, B,). For
a=(s,u 4)e|B*| let(B*), 5 W,. Herc and below,a = (s,u, 4) e |B*|and @’ = (5, u/,
A'Ye |BY. (B*), o: W, — W, is defined to be the arrow g in the unique commutative

diagram
Z,———>B
% X
W

K

A g
Auig 0 lg Jla. s)
A

s Wi/

Py v q. J/

A

Z/l' e’ Bu’

the reasons why the latter uniquely exists are the universal property of 4’, and the fact
that A, ,, B, , are isomorphisms.
The exponential diagram

AxB ' ————>p

7N

A B

4

on (4, B) is given as follows. |4 x B*| = |B|; (4 x B*Y), = Z,;(A x B*), , is the arrow
hin (5). Fortel|Al, m,,:Z — Ay is A, > ps; ©' is similar. Forve |Bl, ¢, ,:Z — B, is
B, ,°e,.

The verification of the needed properties of these data is omitted.
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6. Let X be a small category, A a category having all small limits. The every small
diagram in Ana(X, A) has a limit in ANA(X, A); that 1s, with ¢ : Ana(X,4) - ANA(X,4)
the inclusion, for any small I and I':1 — Ana(X,A), lim(¢ - I') exists in ANA(X,A4).
Morcover, there is a class-function assigning, to any small diagram I' in Ana(X,A4),
a limit-cone in ANA(X,A)on ¢ - I'. If A is locally small, the limit-objects in the assigned
limit-cones are locally small anafunctors.

Proof. Let I’ =({F; >, {fi:Fr = F ;> . ,,<,) be a small diagram in Ana(X, A).
We define L = limI" e ANA(X, 4) as follows.

Fix X € X, to define |L| X. We let 7|X be the category whose objects are pairs (1, s)
with [ e I'and s € |F;} X, and whose arrows (I, s) — (J,t)are (s, t, i) with i: ] — J (that
is,an arrow (1,s) — (J,1)is just an arrow | — J, with the information on the domain
(I,s) and the codomain (J, 1) attached; we will write i:(I,s) — (J,1) instead of (s,1,i):
{I.s) — (J,1). By the hypotheses, I'X is a small category. Consider the diagram
I'X:I'X — A that assigns the object F; (X = (F;)(X) to (I.s), and the arrow
Jisao =) Fr. X — Fy  Xtoi:(I,s) — (J.1). We define |L| X to be the class of all
limit-cones on I'|X in A4; for ne|L|X, n={n; :[n] = Fy XDy gerix. We put
Ln(X) = [n].

Let ¢g:X - Y be an arrow, nel|L|X. pelL]Y, to define h=L,,(y:
L(X) = L,(X). his given uniquely by the condition that

s

L X : > F, X
hl o lFI\ &
LY ——— F,Y

commutes for all I eI, se |F| X, t € |F| Y. Indeed, first of all, the diagram

L. X
Ty o
F, X :
b Froely
FIJ 23 [e)
.Y

shows that the arrow kiog= Frog m s Le X — Fy Y does not depend on s (the
upper commutativity is by m being a cone, the lower by the functoriality of F,; the
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equality f;, ;.- = (15)s.s = F, ¢(1x} holds by the compatibility of the diagram I', and
the definition of 15 ). Next, the diagram

L. X
s o 2z
F‘l, s X f —> F/‘ " X
FI..\- ‘ o F/ ey
F‘l‘/ Y f —> FI‘ v Y

shows that <k, ,D>ynconmy, 18 cone on the diagram [|Y. Since
{pr..:L,Y — F;, Y5>  isalimit cone, there is a unique h: L, X — L,Y such that
hep; = k;  for all I and ¢, which is our assertion on h.

Having defined L, ,(g), 1 leave it to the reader to check that L so defined is indeed
an anafunctor. We have 2,;: L — F; for which 4, ., = 7, ,, for all appropriate values
of the parameters; moreover, {4; >, is a limit cone on the diagram ¢  I'; the verifica-
tion is omitted.

Note that, in the proof, in order to build the required I-type limit, we use a whole
class of other limit-types, to construct limits in 4. However, when each F; is in
particular a functor, than each I1X is isomorphic to I; this shows that we have

7. Assuming that A has I-type limits, then I-type diagrams of functors X — A have
specified limits in ANA(X, A).

The last observation is due to the referee.

3. Anabicategories

In a two-dimensional category, for a given pair of objects (0-cells), the totality of
arrows (1-cells) from one to the other form a category; in short, arrows are objects in
categories, and thus, one should attempt to determine them only up to isomorphism. This
means that, for a given triple of O-cells 4, B, C composition of arrows 4 — B with
arrows B — C, instead of being a functor as it is in a bicategory, should be an
anafunctor, preferably a saturated one.

The definition of anabicategory is obtained from that of bicategory by natural
modifications, amounting to replacing functors by anafunctors in all places. There is
a good abstract way of saying this: an anabicategory is ANACAT-enriched bicategory.
I will not attempt to make this completely explicit, although 1 believe this is the right
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way of looking at the concept. From the description that follows, the reader may get
a reasonably good idea of the notion of an ¥ -enriched bicategory, for any Cartesian
(in fact, for any monoidal) bicategory ¥ . The point is that the more general notion
(v -enriched bicategory) is easier to grasp than the more concrete one (ANACAT-
enriched bicategory), because there are fewer elements of the abstract situation
available for manipulation than there are in the concrete one. This was already fondly
pointed out by me in [12] in the context of the notion of 2-category.

An anabicategory o/ has data 1 (1)—(vi), satisfying conditions (vii) and (viii):

1. (1) Objects (O-cells).

(11) For any pair of objects A, B a category .« (A, B), or simply [ 4, B], of arrows

S
(I-cellsy A — B (the objects of [ A, B]), and 2-cellsas xin A |« B (the arrows of
the category [A, B]). g
(i) For any object A, an identity anaobject of [A4, A] (an anafunctor 1,:1 — [A4,
A].

(iv) For any objects A, B, C, an anafunctor
‘A.B.C: [A~ B] X [B C] - [A# C]

(composition).

(V) Aq. p:15°( )— liap and pa pi( yol,— lyamy (eft and right identity
isomorphisms); here, lg<( ) i1s an abbreviated notation for the composite (in
ANACAT) of

[A.B]lx 1,4

[4.B]—> [4,B]x1 [4,B]x[B,B]——" [4,B];
the natural transformations A = 4, p, p = p4. p have components
VY ’afi’ /. Ph:fif"hlA.ii’ !

(f:A - Biell,jellsl.ae|=4 g gl f 1B.j)’ bely a8y 1))

(vi) For any objects A, B, C, D the associativity isomorphism, a 2-cell &, p  p between
composite arrows as shown in

Laex|CD]

(4, B)%[B,C]%[C, D] : > 14, C|%[C, D]
[A<B]X'1;_< ‘/)l 2 J{.uu‘
(4, B)%[B,D] >[4, D]

LB

The natural transformation x = «, g ., has components
Ao boc.d- h ‘ h(g “a f); (h e ‘1) "\'d.f

(fA _)B’ (]B_>Cs h:C_)Da ae ’A.B.Cl(f;g)ﬁ bEI:A.C.Dl(g tu,f;h)s
c€l g cpl(g.h)del>y 5ol (fihcg)
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Remark. To simplify notation, here and below we ignore the canonical equivalences
and isomorphisms that are part of the Cartesian bicategorical structure of ANACAT.
Thus, when we want to state the notation of 7 -enriched bicategory”, there is another
object in the diagram, and the left-hand side looks like

([4.B1®[B,C)®[C.D]
:lf)
[4.B]®([B.C]®[C.D])
(A.-B1® ¢ pl
l
[A.B]®[B.D]

with p the appropriate canonical equivalence in .«/. In ANACAT, p is in fact an
1somorphism.

(vii) (Associativity coherence). Let A, B. C, D and E be objects. With a logic that
should be easy to guess, we make the following abbreviations:

0 =[A,B]1x[B.C1x[C.D]x[D,E]
I =[A.C]x[C.D]x[D.E]

2 =[A4,B]1x[B.D]x[D.E]

3 =[A,B]x[B.C]1x[C.E]

12 =[A.D]x[D.E]

13 =[4.C1x[C,E]

23 =[A,B]x[B.E]

123 =[A4,E]

€0,1> =4 p.¢x[C.DIX[D.E] :0 > 1
0,2 =[A.B]x g c.px[D,E] 02
0,3> =[A.B]x[B,Clx>¢cpy 03
(L12Y =4 cpxX[DE] 1 = 12
(L13y =[A.Cloepe 1213

{2,12> sy ppX[D,E] 12 =12
{2,235 =[A,B]lx®p p g :2— 23
{3,13) =4 pcx[C.E] 3 > 13

II

{3,23> =[A,B]lx°pc.p :3—23
{12,123 = "4 pp 112 — 123
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{13,123 =", ¢.¢ 113 = 123
{23,123 =", p 23 - 123
We have the cube
12 —> 23
T > 13

[\e}

| /
/ -

0

with the edges the anafunctors indicated. Each face of the cube has a 2-cell in it as

follows:
The front face:

(13) =id :<1,13»<0,1> - (3,13><0,3>

(both composites are canonically isomorphic to » 4. ¢ X “c. p, £; taking the products in
ANACAT as in CAT, the isomorphism is the identity);

The back face:

(U2 =24 5 pr 12,1235 2,125 — (23,1235 <2,23};
The bottom face:

(23) = [A, B xap c.p. r :<2,23)<0,2) — (3,235 <0,3);
The top face:

(23 =ay ¢ p e 12,1235 {1, 12> — (13,1235 (1,13},
The left face:

(12) = o4, p.c.p X [D,E] :{1,125<0,1) — (2,125 <0,2);
The right face:

(12)3 =2, ¢ 5 :<13,123>(3,13) — <23,123) (3,23).

With triple composites meant as associated to the left, there are six composite
anafunctors from 0 to 123:

<1235 = 12,1235 (1,125 <0, 1),
(132) = (13,1235 <1,135 €0, 1,
2135 = (12,1235 (2,125 €0,2>,
(231> = ¢23,123 (2,235 <0,2),
(3125 = (13,1233 ¢3,13) €0,3),
(3215 = ¢23,123) (3,235 <0,3);

> 3
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and six composite natural transformations between the latter, which (after ignoring
canonical isomorphisms in ANACAT) are as follows:

123 = (12)-¢12,123) :<123) - (213,
123 = <0, 1> ~(23)1 :<123> - (132,
213 = €0,2) +(13)2 : <213 — (231D,
231 = (23,123) (23) :<231> — (321,
132 = (13,123) < (13) :<132) — (312,
312 =<0,3> - (12)3 :¢312) - (321

We obtain the following diagram of natural transformations:

213y — 28 5 031y
123 231

(1235 (321>

123 312
{132 ———> (312>
132

The associativity—coherence condition is that the last diagram be commutative, for
any choice of A, B, C, D and E. This is essentially a pentagon since 132 is (can be taken
to be) the identity; the above way of presenting it is more symmetric.

When we present the last diagram componentwise, we take a 4-tuple (f: 4 — B,
g:B—> C,h:C - D,i:D — E) of arrows, and compute their (five) composites with
all possible bracketings. Since there are twelve distinct compositions to be performed
(corresponding to the twelve edges of the cube), we will use twelve arbitrary specifica-
tions for ten composition anafunctors (ten because any one of them is determined by
selecting three out of the five given objects); two of them are used twice (see the
formulas above for the composites 0 — 123).The condition becomes the coherence
pentagon ((1.1) (A.C.)in [1], p.6), with the twelve arbitrary specifications appropriate-
ly added; explicitly

X507

iog((hoyg)os f > (io,(he, 8))5 f

i3 9‘1.:,43]\ l".x 7o x2S

ies(hoy (g, ) o (GGogh)oy ) g f

23910 EARUNINE

(iogh)e (g f)
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with the numbers 1 to 12 standing for appropriate, but otherwise arbitrary, specifica-
tions.

(viii) (Identity coherence) Consider
[4, B]=*[B,B]*[B, (]
(12N> [B,C] l = FG:T [4,B]x"1,'%[B,C] H=l [A, B> (1,°0))

(4, B]x[B, C]

I= lﬂ,n,('

[4, C]
and
IFG N
T
[A,B]X[B, C] 7 O ne)C ———}[A,C]
M’j(. J, L

The condition is the commutativity

(2, 55c)GC

IFG —> IHG
. o]
I

In components, this becomes

X hed

g% (lls’a[ou.f) —> (goclff’i)od.f)

& heta P dmf

g f

(f:A - B,g:B — C,etc.).

A one-object bicategory is a monoidal category; its objects are the 1-cells of the
bicategory, arrows the 2-cells, tensor-product is composition of 1-cells, the (two-sided)
unit I is the identity I-cell 1,.. A one-object anabicategory is an anamonoidal category.
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An anamonoidal category is a category A, with, among others, a unit anaobject I =1,
of A (that is, an anafunctor I:1 — A4) and a tensor-product anafunctor ® 4 x 4 — A4;
for objects A, B, we have tensors A ®, B, for any specification a € | ® | (4, B). (Note
the changed order in A ®,B of the arguments with respect to the notation of
composites.) To say that ® is saturated is to say that whenever y: 4 ®,B—— C,
there is a unique be | ® | (4, B) such that C = A®, B and u:1,®,1p; if so, and if
I 1s saturated too, we say that 4 is a saturated anamonoidal category.

2. Example. Let R be a commutative ring (with 1); Modpg the category of R-modules.
Mod, is a saturated anamonoidal category, with the following canonical
structure. | ®[(4,B) is the set of all entities a=(C,n:(4,B) > C) where
1 is a universal (R-)bilinear map from (4, B): for any bilinear ¢ :(4, B) — D, there is
unique f:C - D such that ¢=f>n we put A®,B=C. Given also
b=(F,0:(D,E) » F)e|®|(D,E), and f:A > D, g:B—>E, fR,p g:AR,B —
D ®, E 1s the ungiue arrow h:C — F for which 0 = f¢#. The unit anaobject is the
saturation "R :1 - Modz of "TR7:1 - Mody picking out R as a module over
itself. I leave the definition of the identity and associativity isomorphisms to the
reader. This is the usual definition of Mody as a monoidal category, except for the
absence of a non-canonical choice of the tensors, and a somewhat artificial-looking
way of dealing with the unit object. (We could leave the unit object as it usually is,
given by "R7:1 — Mody (as an anafunctor), but then Mody is not saturated; we will
see the advantages of saturation for anamonoidal categories when we discuss mor-
phisms between them.) The usual verification of the monoidal properties works with
no essential change to show that we indeed have an anamonoidal category. It is in fact
saturated; the part of this fact that concerns the tensor-operation is essentially
equivalent to saying that the universal bilinear map is unique up to a unique
1somorphism.

3. Example. Given a category X with (not necessarily specified) pullbacks, we have
the anabicategory Span(X) of spans in X, defined as follows The objects are the
objects of X, an arrowf X - Yi m Span(X) is a pair f = (X Sop L, Y) of arrows
in X; with also f' = <1>—>Y) :X - Y, a 2-cell p:f - f is an arrow in
@:® - ¢ withflo —fl, f5 j = f>; composition of 2-cells is composition in X. With
fas above, and g = (Y «“~TI'-%» Z):Y — Z, we define |°y y. 2| (f.g) as the set of
pullback diagrams

/\
f\./

(M
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denoting (1) by a, we define g =, f to be (X Lk 7y X 5 Z. Given, in addition
to data as above, also g’ = (Y «— LIy 1N Z):Y - Z deloxyd(f9)yig >4,
O aV:g%af = g °af is defined by the arrow ¢ : ¥ — ¥’ we can put in the diagram

/\

./\/\
\./‘\/

‘\/’

by the universal property of the lower pullback. The identity 1,: X — X is given by
the span (X L x X) (the identity anaobject of Span (X) (X, X) is now an
ordinary object). The identity and associativity isomorphisms for the composition are
given by canonical isomorphisms of pullbacks; the picture

52
/3 2/5\4

/\/\H/\

(2)

contains the construction of the associativity isomorphism
%3.6.5.7:4°6(2°3 1) == (4°52)°, 1;

in (2), each of the items 3, 5, 6 and 7 is obtained by taking a pullback. The rest of the
definition and the verification that all this gives an anabicategory are left to the reader.
In fact, the definition is the usual one ((2.6) in [ 1]) for the bicategory of spans, with the
non-canonical choices removed. The composition functors are saturated in this
example.

A morphism of anabicategories will be called an anafunctor (of anabicategories); this
is the natural counterpart of “homomorphism of bicategories” (see [1]), or functor of
bicategories as we called it above. With # and ./ anabicategories, an anafunctor
F:Z — .o is given by data 4(i)—(iv), satisfying 4 (v) and (vi), all given below. Again, we
actually have a more general notion, that of an anafunctor of ¥-enriched bicategories.
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4. (1) A class |F|, with maps ¢:|F| — | X[ (“source™), 1:|F| — |4| (“target”). |F| is the
class of specifications; x € |F| “specifies the value 1(x) at the argument o(x)”. For
X € X, we write |F| X for the class {x € |F|:a(x) = X}, and F.(X) for 7(x); the notation
F.(X) presumes that xe|F|X. As before, we write |F|(X,A4) for {xe|F|X:

FX)=A}.

I note that it would be natural to make |F| (X, A) into a category; indeed, saturation
for F will mean an additional structure, with |F| (X, A) made the object-class of

a groupoid; I will not pursue this in this paper, but see [13]).

(i) For any xe|F| X, ye|F|Y, an anafunctor F, ,:Z(X,Y) » & (F, X, F,Y).
(iii) (Composition isomorphism) For x and y as before, and z € |F|Z, an isomor-

phism natural transformation F, , . as in

(X, Y)x2(Y,Z) R > 7(X,7)
F‘.JXF\.__. Fr._\:: Fx.:
o/ (F,X,F.Y)%d(F,Y,F.Z) : > o/ (F.X,F.Z)
: vt F.X.FY FZ ;

The components of F, , , are 2-cells of the form

F,\',)k;:,\,m«:a.b:(Fy.:;fg) b (F\:y;sf)—%'_’ F.n::u(g uf)

(3)

(iv) (Identity isomorphism) For any X € # and x € |[F| X, an isomorphism F, as in

(X, X)

1 Bk,

! FeX

AF X F.X)

the components of F, are of the form F ;1. x:/_;" Focullx )

(v) (Composition coherence) We arrive at the coherence condition for the transition
isomorphisms F, , . without explicit use of further specifications by drawing diagrams

of anafunctors and natural transformations in the style of 1 (vii). Assume
Xyt z b w

and
xelF|X,yel|F|Y,ze|F|Z, we|F|W.

Let us abbreviate:

X=FX Y=FY, Z=FZ W=F,W,
1=2(X.Y), 2=#(Y,Z). 3=4(Z.W)
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and consider

/ X§ />a

1%2x3 > x5 1

I\ 4x3 I\ > 6,
s / L /

with edges

Ay =F, xF, . xF, , 1x2x3 > 1x2x3,

QY =T(X,Y)Xy 7w :1x2x3 = 1x5,

4y=F, ,xF, , 1x5> 1x5,

5 =gy 2XA(Z, W) 11x2x3 - 4x3,
(6 = 557, XA (Z,W):ITx2x3 5> 4x3,
Iy =F,.xF,, :4x3 > 4x3,

8> = xzw:4x3 -6,

9y =x.v.w :1x5 -6,

il

<10y = "Ry T x

— 6,
<11>:FX‘W I6—>6,

— 0.

(%)

A2y =v5 7w 14x

151
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The front and left faces are themselves composites as follows:

- _ 3 - _ - 6 _ _
1x2x3 & —> [ x5 1x2x3 © —> 4x3
N
T<142> <42>T T<1.4> {1.2)
_ _ (13) _ _ 14 _
1 x2x3 > [ x5 [x2x3 Sl > 4x3
A
T<1.1> <41>T T<1.3> 7.1
1x2x3 —> x5 1x2x3 > 4x3
2> &)

where the arrows are the ones obtained by the above pattern. The faces of the cube
each have an isomorphism 2-cell in them as follows:

The lower front face:
Z(X,Y)xF, ., 13511y - {4152);
The upper front face:
id F, ,xeyzw = FoyXoyzw:
The (complete) front face:
(1 =(Fs yxorzw(Z(X,Y)xF, ;) 1351 = <4)<(2);
The back face:
[2] =F .\ : {155 <10) — {145 <11
The bottom face:
[3] = ax yzw <115 (85 — (12> <2);
The top face:
[4] = ag rzw <155 (9> — <135 (6);
The lower left face:
d tox vz X Fow = oxvz X Faws
The upper left face:
Foy.xod(Z,W) :(6)(1.4) - (7.2){14);
The (complete) left face:
[5] = (Fey - x A (Z, W) (ox, v 2% Fr ) 16 K1) = <TH (5
The right face:
(6] =F . :<10> <45 — 115 <9).
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We have six composite arrows from 1x2x3 to 6 in the cube, and six 2-cells
between them; the commutativity of the resulting hexagon is the requirement:

Q0311
10>3H (1) ——— (103{4)(2)
[41<1/ [61¢2>
125¢65<15 ° 1595<25

A 75 (THC8E5)

The componentwise form of the condition can be obtained by chasing an arbitrary
element (f,g,h) € 1 x2x 3 around. It can also be obtained directly from the corres-
ponding condition for bicategories (see (4.1) (M.1) in [1]), by putting in further indices
in a meaningful way. Starting with xLy4H zHw, xel|F|X, yel|F|Y,
ze\F|Z,we|F|W,and1, ... ,7and 1, ..., 10 from appropriate specification-sets, we
use the abbreviations

Ff=F.u(f), Fg=F..5(9, Fh=F_ ,ah),
F(gesf)=F:algeaf)  Flhosg) =Fy3(hecg),
Fhoo(goa ) =Fouslhoolg=z )

F((h=69)°10 /) = Fewrl(hs9) 10 ),

Fi,=F  .izn12 Fs ¢=F,:wnrizse

Fio=F . w3ssa9  Fs10=Ferwisnsio

Fay 96,10 = Fewmar(%2,9.6.10)-

The following diagram has to be commutative:

— — — Ay 357 — — —
Fhe,(Fgo Ff) > (FhesFg)o, Ff
ﬁh"u F1.2l ﬁs_c‘vxﬁf
Fhe,F(ge,f) ° F(hegg)esFf
F{gl FX‘I()
v
F(hoo(goyf) —~ > F((hogg)oS)
Fay 610

(vi) (Identity coherence) We give the componentwise form of the condition
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only. For f: X — Yin#,xe|F|X,yel|F|Y,and appropriate specifications I, 2, 3, 1,
25 39 i’ js

° P F‘_I'LzFr,»\.'z(f)
Fy,y;T(ly.i) 1Fr.y,§(f) = 1/<'},<Y),/°2F;,.1-,§(f)
Fx.,m.ii,i.l.: °© in
F,.5(1 0, > F_
X ¥ .2( Y. 3 f) F‘._V_i’;(}q,) yi3 (f)

and a similar commutativity involving the p’s.

From now on, we assume that the anabicategory .o has saturated identity functors
1,:1 —= [4,A4] (1 (ii1)), and saturated composition functors >4 p ¢:[A4,B]x[B,C] —
[A4,C7 (1 iv)); in this case, let us call .« saturated. For o/ saturated, there is a useful
reformulation of the notion of anafunctor #° — ./, trading in the associativity
isomorphisms for certain operations on specifications.

Let F: 24 — . be an anafunctor of anabicategories. For simplicity, assume that the
sets |[F| X are singletons. With the notation of 4 (iii), in the context of (3) there, with the
subscripts x, y, z dropped, the saturation of the composition functor

o=cyy. 2 (FX.FY) A (FY,FZ) » </ (FX,FZ), (4)
gives a uniquely determined & € || such that (F,g)»3(F.f) = F,(g=.f) and

Vegonale s = Forwan- (5)
Here, @ depends on ( f, g and) s, t, u, a and b; however, the dependence on b is illusory.

Consider the following commutative diagrams:

Lownls
Lo BB g

Fgoy B S > Fgo F f

F;goﬁ Ef

l;;g'hih 1 bt

FgoyF f > Fgo, K. f

ENAT O

F(gez:f)
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(the first is the functoriality of (4), the second is the naturality of Fyx y z of 4 (ii1).
Together they show that if a is suitable for b, then it is suitable for ', with the other
data being the same. Thus, we have a as a function of s, t, @ and w:
4. (i1*) (Action on specifications)
a=F(stwa) (selF|f,telFlg ael[((f9)
uelFl(g=uaf); ael-|(Fsf Fig))

such that

Fu(.q af) = Fl(q) a Fs(f)
and

Fuw (7 Caa @)= (F.. t’(}')) !'"’a,(:'(Fs, s‘(q)))

(p:f = f.y:g —» g,a = F(s,t',u’; d'); the last equality corresponds to the naturality
of Fy. y. 7 of 4 (ii1)).

Next, we realize that in this context composition coherence (4 (v)} has as a conse-
quernce the identity

4. (v*) (Action on associativity isomorphisms)

Fe (g pea) = dtapeds

\
hoy (g f) v

X S FW
(h.g)uf
F.g
FY —> FZ

Foho (g ) N8

S FW

12V Fih

FX

F,(th .g) 'L/f)
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anda=F(1,2,3a,b=F(3,4,6,h),c=F(2,4,5¢,d=F(1,5,7; d).

The identity isomorphisms (4 (iv)) can similarly be traded in for specifications. Let
A e of. The saturation of 1, means that whenever u: 1,1,[—;—» ¢/, there 1s a unique
jell,| such that /=1, ; and u =1, ; ;. The identity isomorphism of 4 {(iv) has
compounents

Fx,u;,,,'i lFx.j”E_’ Fo(ly 5).

Given the data in the last display, by the saturation of 14, there is unique i such that
lex ;= F,(1y,;) and

lFX«/lf = FX,u;L/" (5)

Again, I here does not depend on j; i = F (1; ). Thus, the data 4 (iv) can be replaced by

4. (iv*) i= F(ui) (el 1xuelF|(lx. )
such that
F.(ly ;) =1lpy; and F, ,(1x ;)= lpxir

(i=F@i), i =FW;i)).
Then 4 (vi) becomes

4. (vi*) F (o) =4a; (X =Y, 20t lv.i"afi’f, selF|f. telFy yl(ly.,),
uel|F|(ly ;o. f); @ = F(s, t, u; a), the latter from 4 (iii*), and i = F (t; 1)), and similarly
for p.

Conversely, even without assuming that .« is saturated, in the definition of an
anafunctor F: & — .o/ with all |F| X singletons, we can dispense with the composition
isomorphisms 4 (iii) and the identity isomorphisms 4 (iv), and instead, use the data
4 (iii*), 4 (iv*), satisfying 4 (v¥) and 4 (vi*). Indeed, if F is given by 4 (1), (ii), (i1*), (iv*),
{(v*¥) and (vi*), there is a unique anafunctor F:2 — .o/ in the original sense that is
related to the F we start with as just described; we use (5) and (5') as the definition of
composition isomorphisms and identity isomorphisms, respectively. The essential
point is that 4 (v) and 4 (vi) and will hold.

An anamonoidal functor is, by definition, an anafunctor between anabicategories
with one object, with the one specification set for the object-function being a singleton.
Explicitly, with X and A4 anamonoidal categories, 4 saturated, an anamonoidal
functor F:X — A is given by an anafunctor F:X — A of the ordinary categories
X and A, a mapping assigning to each se|F|X, te|F|Y, ae|®]| (X,Y), uelF|
(A ®, B) a specification a = F(s, t, w; a) € | ® | (F, X, F, Y) such that

FAX®.Y)=(F,X)®.(F.Y)

Fu,u’(f@a,a'g) = (Fs,s'f) ®&.J'(Ft,t'g) (fX - XI’ g: Y - Yla etC.),
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and a mapping assigning to each i € |I|, u € |[F| (Ix ), a specification i = F (u; i) such
that

Flx)=1,;
F(Ix‘i,f) = IAj.j

and such that the conditions 4 (v*), 4 (vi*) hold.

In case F is a functor (each |F| X is a singleton), d becomes a function of a4 alone,
thus F is given with a function also denoted F:|® | (X,Y) - |®| (FX,FY) and
another function F:|I | — |I,| such that

FIX®,Y)=(FX)®r(FY),

F(f®uuw9) =(Ff) O rar (Fg) (f1X - X', g:Y - Y/, ete),
F(% b.c.a) = Xra, rb, Fe. 1d>

F(ha i) = Araris F(pai) = prari (aitlx;®aA— 4, etc.).

We may call such an F a monoidal functor between the anamonoidal categories;
a monoidal functor is precisely a structure preserving map of anamonoidal categories.
It is pointed out next that monoidal functors of anamonoidal categories correspond
exactly to the (not necessarily strict) monoidal functors of monoidal categories in the
usual sense [4].

First, given a monoidal category X is the usual sense, we can construct its
saturation X*, a saturated anamonoidal category, as follows. The underlying category
of X* is the same as that of X; the anaoperation ® * : X x X — X is the saturation of
the functor ® : X xX — X This means that | ®* | (X, Y) is the class of all entities
a=(X,Y,u:X®Y— Z), with X®,Y =2, and for [:X - X, g:Y - Y,
f®uag = {f®g)ou~'. Similarly, the unit anaobject of X* is the saturation of
1 - X

Now, given the monoidal categories X and 4, we can form their saturations X*, 4%,
and we have a bijection

Hom (X, A)— Hom (X*,4%), (5")

where the first Hom is the collection of all monoidal functors X — A in the usual
sense, the second all monoidal functors X* — 4* as defined above. This bijection is
given as follows: to F: X — A4 corresponds F*:X* — A4#, where for a as above,

F*(a)={FX,FY, F(p)>iy.y:FX® FY — FZ),

where iy y: FX ® FY— F (X ® Y)is the canonical isomorphism given with F; the
action of F* on identity specifications is defined similarly. The verification of the
bijection (5”) is omitted (see also [14]).
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2. Example (continued). Let ¢ : R — S be a homomorphism of commutative rings.
With Modg, Modg understood as “the” usual monoidal categories, it is common
knowledge that we have a monoidal functor

FZ( )@RS:MOdR - MOdS; (6)

this is because
(*) (X ®gS)®s(Y @ S)is canonically isomorphic to (X @ Y) ®rS (X, ¥ € MOdg).

However, in (6) there are two places where non-canonical choices have been made:
one is the definition of the monoidal categories, the other is the definition of the
functor itself. Making the categories anamonoidal categories in the way explained
before, and making the functor an anamonoidal functor, we avoid all non-canonical
choices.

Explicitly, F as an anafunctor F: Modg — Mods is given by |[F| X = the class of
all universal R-bilinear maps of the form (X.,S) — Y; for s the last-displayed map,
F¢(X)is Y as an S-module (in the usual sense); the action of F on morphisms is the
straightforward one. The action 4 (iii*) on specifications 1s obtained by making the
proof of () explicit. Given universal R-bilinear maps

X.5)—> X, (VST XY)-“-Z (25> Z
We construct a canonically defined S-bilinear map

(X,7)-"= Z, )
briefly described as follows. The composite

(X,S,Y.S) > (Z,5)—> Z

(x,u, vyv) = (alx, y)u-v) — 3a(x,y),u-v)

is R-linear in each variable. By the universal property of 1, this gives rise to the
componentwise R-linear map

(X,Y.8) - Z,

and that of 2 then gives (7) canonically; we can then show that (7) has the required
universal property. This is the description of the action 4 (iii*) of F on specifications.
The rest of the data and conditions are left to the reader to provide.

3. Example (continued). Let F:X — A be a pullback-preserving functor between
categories with pullbacks. F gives rise to an anafunctor F:Span(X) — Span(4) of
anabicategories. The action of F on objects is that of F; the action on arrows of F is
induced by that of F; now, all specification-sets |F| X are singletons, F|X = {X},and
the effect of F on arrows, Fx y:Span(X)}(X,Y) — Span(4) (FX,FY), is an ordinary
functor, for each X, Y € X. The identity isomorphisms are identities. Instead of the
composition isomorphisms, we give the action 4 (iii* ) of F on specifications; remember
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there are no s, t, u now. Indeed, this is nothing but the action of F again;ae|=|(f.g)is
a pullback square, a is its F-image:

SN L,
NN TN

It is immediate that we have 4 (v*): the diagram (2) is mapped into a similar diagram
by F.

;
A transformation h: F — G, of anafunctors 7 =3 «/ of anabicategories, is given by
data 5 (i), (i1) and condition 5 (i), (iv).

5. () ForXe#,xe|F|X,x e|G|X,an anaobject h,_,. of the hom-category .o/ (F, X,
Gy X). he i 1— o/ (F,X,G.X). h,_. has components h, o . F. X - G, X
(melhy o))

(i) For the data in (1) and Y e#, ye|F|Y, y €|G| Y, a natural transformation
hye vy asin

oA(F,X,FY)
O

XY . l A(F,X,G,Y)

()he

O/(G\'X’ G\'Y)

Here, h, , ~( ) abbreviates the composite of

h“\ W

SAF X, F.YY=1x o/ (F X, F,Y)

SAFY, Gy Y)yx o (F X, F, Y)
— J(F.X,G,Y)
he «. ., has components
h

NSy tachimon e

hr. vinCa F\’\\(f) - Gx’._r’:x' (f) “b hx‘ X'tm-
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The conditions that follow will be given in their componentwise forms only.
(iii) With reference to
XLyt zx-1 0y,
Ff: Fx,y;s(.f)’ Fg = Fy.:;!(g)s F—(g le) = Fx,:;u(golf)a

_fz Gx',y’;s’(f)9 Gg = Gy’.:’:r'(g), G_(g Qlf) = Gx'.:';u’(golf)s

.

ol
Q

1,4 = Fx,y.:;s‘f,u;l,4> Gl, 6 = RG-S ST N3}

hX - h,\'. x,ms hY = h)',)".n’ zZ = h:,:'.pa
h2. 3= hx.x’.:.z';u,u';2,3;m.p’ h8. 12 = h,\'._v":,:';r.t':& 12:n,p>

h14, 10 = hx,x’._\',)";s.s’:14.10:/n,ns

al = a4 5,89, 02 = %10, 11, 6.7 o3 =04, 15, 12,13,
— — hys — —
hyo F(ge f) > G(ge, f)°; hy

Fz"s.zﬁx_*tT; ;Téé.lﬂlxh_.\'
hoos(Fg oy Ff) . (Gge, Gf )or hy
1ll§ ;TaZ
(}_’zosﬁg)of)ﬁf C_;gon('c_;folo ;X)

hx.lz‘"u_nﬁfl TGgAIS_IIhH_lU

((‘;golz}?y)ouﬁf% chls(y};yomﬁf)

1

(iv) With all appropriate values of the parameters,

P, P lak
—_ &
Ry vim® l/grx,j ~ > ex ~ l(ier,/(Oth,x',m
B vozaFe, e Gy
N
hx.x',mo3F;,x,.\' 1X,l P - Gx',x’,l IX,lo4hx,x'.m
e x w3 A

The transformation h is natural (the more usual terminology would be: strong) if

each natural transformation A, . . . is an isomorphism.
Consider saturated anamonoidal categories and anamonoidal functors between

F
them: X:G:$ A. A transformation h: F — G (in the sense of one between anafunctors

of anabicategories) involves an anaobject A, , of A. Let us take this to be I, the unit
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anaobject of A; let us call such transformations h monoidal. Then
Edﬁ h.\..\":u.h;m.m . Fb(X) ®a IA.m - IA.m ®b GG'(X)

gives rise, via the identity isomorphisms, to hy o Fg(X) — Gy (X )

h
F\(X)®u[AJn > [A‘m®hG\'(X)
Pa l = o ;l/l b
F(X) - —> GA(X)

indeed, we easily see that the resulting lower horizontal arrow is independent of the
parameters d, b and m. Inspection shows that conditions 5 (iii) and (iv) reduce to the
following:

'

E/(X®11Y) > Gn'(X®uY)

FX®,FY > G.X©,G,Y

with @ = F(s,t,u;a) and d = G(s,t",u'; a); and

hu. v = I.»I,Fm;i)_ (;(r;z’)( : IA.F(u::i - IA.G([‘:H)

(Here i e {Ix|,u e |F|{Ix,). v € |G|y ;); recall that F(u; i), G(v;i) € |1,].)
When F and G are (monoidal) functors, these data and conditions further reduce to

hy:FA — GA,
hiw,s=hi®ricahp,
h o =1y
Now, the mapping (5”) becomes an isomorphism of categories
Hom (X, 4)— Hom(X*,A4*)

between the category Hom (X, 4) of monoidal functors X —+ 4 and monoidal natural
transformations in the classical sense (see [4]), and the category Hom (X*,4%) of the
monoidal functors between the saturations X*, 4* and their monoidal transformations.

4. The anabicategory of saturated anafunctors

The saturated composition of two saturated anafunctors (or sanafunctors, for short)
is obtained by saturating the ordinary composite introduced in Section 1. Since
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saturation involves taking quotients of equivalence relations, it is natural to define the
composite of sanafunctors up to isomorphism only, by allowing the quotients to be
replaced by sets that are bijectively related to them. In this way, we get the meta-
anabicategory SANACAT?* of categories and sanafunctors, and the anabicategory
SanaCat* of small categories and (small) sanafunctors between them. From the point
of view of the present paper, SanaCat* and SANACAT? seem to be the right
universes for category theory.

We now assemble the definition of SanaCat®, the anabicategory of small categories
and saturated anafunctors, in explicit terms; the consideration of SANACAT?* will be
left to the reader.

Recall that, for X, 4 small categories, Sana (X, 4) denotes the category of sanafun-
ctors from X to A4 and their natural transformations. With X, 4 and M arbitrary small
categories, we define the composition anafunctor

o =oy qar-Sana(X,4) x Sana(4,M) — Sana (X, M) (1)

as follows. Recall the criterion for a “bi-anafunctor” stated in Section 1. after 1.13;
according to this, we only have to define, for F € Sana(X,A4), G € Sana(4, M) and
H € Sana (X, M), that is,

A
X/ XM (2)
. >

the specification-sets | o | ((F, G), H) and the sections

( )oF:Sana(4,M) — Sana(X,M), (3)
Go( ):Sana(X,A) — Sana(X,M), 4)
appropriately.

For F € Sana(X,A), G € Sana (A4, M) and H € Sana (X, M), |°| (F, G), H) is defined as
the set of all families & = <%y >y < obixy Of Mmaps

ax € I1 |H|(X.G,F,X)
(se|FIX)te]|G|(Fs X))
ax:(s€[F[(X),t € |G|(Fs X)) = ax(s,1) € [H{(X, G, F; X). )

such that « satisfies the following condition (i).
(i) For all /:X —» Y, se|FI{X), te|lG|{FsX), uelF|(Y), vel|G|(FsY), if
a=ax(s, 1), b=oay(uv), we have

Gt,v(Fs.u(f)) = Ha.b(f)'

o as in (5) satisfying (i) is called a composition specification ( for “H = F > G”).
Note that, under the notation of (i), H,(X)= (G, F).(X)= G, F,(X) when
ax(s,t) = a.
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We have that any composition specification « for “H = F » G” satisfies the following
{11) and (iii).

(i) For any X e Ob(X), MecObM), ac|H|(X,M) and se|F|X, there is
te|Gl(FsX) such that M = G, F; X and ax(s,t) = a.
Indeed, take any ve|G|(FsX), and let b = ax(s,v); since G is saturated, there is
a (unique) t € |G| (Fs X, M) such that

Gr.t(lF_‘X) = Hh.u(lx):GstX - M.

But then for « = ax(s,t), by (1) we have H, ,(1x) = H, ,(1x), which, since H is
saturated, implies ¢’ = a.

(i) For all X, M, s, t, u, v such that G F, X =G, F,X =M we have that
ax(,1) = oy (1, 0) iff oy Fy (1) = Ly,

Indeed, by (i1), G, F¢..(1x) = H,(1x) with a = ax(s,t), b = ax(u,v); since H is
saturated, H,,(1x) = 1, iff a = b.

A partial composition specification for “H = G°F” 1s a family a = {ax D xcobnx
of functions ay with domain dom(ay) <[, s x|GI(FsX) = {(s,r): sel|F|(X),
t€|G(F;X)} such that for any X € Ob(X), there are se|F|(X), t e |G|(F,X) with
(s,t) e dom(zy), and (i) holds for (s, 1) € dom(ay), (u, v) € dom(ay). Any partial composi-
tion specification can be uniquely extended to a compiete one for the same relation
“H =G»F"; given any ue |F|(X), v €|G|(F,X), choose (s,t) as above, and define
b = ax(u,v) so as to satisfy

Gr‘v(Fs‘u(]X)) = Hu.b(l)();

a unique such b exists because H is saturated. It is easy to verify that the full
specification so defined, also denoted by a, will satisfy (1).

To define the section (3), first of all, we have to show that | »| (F, G)) is inhabited (F
and G as before). For H = G+, F, with suitable «, we take (G F)*; here G<F is the
composite as anafunctors in the sense of Section 1, and ( )* is the saturation functor.
According to the definition of H = (G-~ F)*, a typical element of |H| (X,M) is an
equivalence class [(s, 7, #)] with s € |F|(X), t € |G|(F,X) and y:G,F, X — M, where
the underlying equivalence relation is defined by

G«’ Fx.\' [.\'
GFX ——" > GF.X

gt ot [s]
(s, 0~ (s 10 p) <= \ /

M

To define the composition specification «, we put ax(s, t) = [(s,t, 16, ¢ x)] (s€|F| X,
te|G|(F;X)). With further data as in (i), the definition of H = (G- F)* gives that
Hyg e () = G F, ,(f); thus, (i) indeed holds. We have shown that | <] (F, G))
1s inhabited.
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To define the effect of the section (3) on arrows. we take
F —%—>
X—>4 v M
—‘—‘—>G,

and for ae|»| (F,G)), 2" || ((F,G")), we define
\’UX‘,'F:(G 1F) - (G, 7F)a (6)

that is, we determine the component
(Vors Pl (G o Flu X = (G Pl X
forany a €|G F| X, a'€|G' <y F| X. But, by (if), we can take s € [F| X, t € |G|(F, X),
t'€|G'|(F, X), such that ax(s.1) = a, xx(s,t') = &; we define
(Vorw Flow =vev G F, X > G F X 7

If, instead of s, 1, ¢, we take u, v, ¢, then by (i1), and the commutativity of

Vir
GFX ————> G.FX

G, (F..1) l = l//,, 1,,”,—\[(},\ (Fo. 10

G\'F;IX —T—__é G\"F;! X

(the naturality of v), we see that the same value is obtained in (7). We omit the
verification that (6) so defined is a natural transformation, and that (3) so defined is an
anafunctor.

The definition of (4) is analogous; we get, for

X E'p A—S 5N,

(Gucz.[ﬂ’)a,h = Gr,u(/)s,s’):GlFxX___)Gqu’ X

(ax(s,t) = a, ay(s, u) = b). Finally, condition (ii} in the characterization of “bi” anafun-

ctors is
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which becomes, in components,

G, py .
GIF\'X _ GuF.s-’X

v/r'l o] lvuu'

GI'FSX —_— GU'F:'X
G p. :

which holds by the naturality of v.
In fact, the composition anafunctor (1) is itself saturated. To see this, let H = G, F
and h: H—— K; by 1.9, h is given by bijections

(a > @):|Go, F|(X, M)~ |K|(X,M).

We want to show that there is a unique f € || (F, G), K) for which h = 15, 51p. For
XeX selF|X, te|G|(F.X), and M = G, F, X, let us define Bx(s,t) ;5 ax(s,t). We
have that f satisfies (i) with ax(s,t) = a, oy (u,v) = b, we have G, Fo,(f) = Hy(f)
since o is a composition specification; but H,, (f) = Kz5(f) by 1.9; the desired equality
follows.

Let ae |G-, F| (X,M). On the one hand, h, ; = 1 (see 1.9). On the other hand,
choose (s, t) such that ax(s, t) = a; then fx(s,t) = @, and (152, g lplea=gon s Flea =
(1), = la. This shows that h,; = (15°, 5 1r).a since we have “enough” pairs of
specifications (a, a) (see 1.7), it follows that h = 15+, »1F. It is also clear that § is
uniquely determined.

For any small category X, the identity sanafunctor 1} : X — X, the saturation of the
ordinary identity functor, has {1%| (X, X’) = Iso (X, X"), the set of all isomorphisms
from X to X',and, for f: X —» Y, ie|1Z| (X, X"),je[1Z| (Y, Y"),

() ;(fy=jofoi i X > Y.

The identity anaobjects in SanaCat™® are given by the ordinary objects 17 .

We may make SanaCat” into a saturated anabicategory, by taking the saturation
17 *:1—> [X,X] to be the identity anaobject for X; we will not carry out this
change.

For F:X — A, the component A,: 17 o, F—=— F of the left identity isomorphism
A=ix g 1E o, ( )— lix.47 is given (see 1.9) by the mappings

AlX,A):(ael|lf - F|(X,A) — (@e|F|(X, A)),

one for each pair (X € Ob(X), A € Ob(A)), defined thus: if se|F|X, ie|l]|(F,X),
a = ax (s, i), then a is determined (through the saturatedeness of F) by the conditions
F; X = A, F,(1x) = i; it is easy to see that this does define a — a uniquely, and the
equality (see 1.9) (12°F), o(f) = F.5(f) holds (f:X - Y, ae|l¥-F[(X),
be|lf - F|(Y)), showing that 4, is properly defined. The naturality of 1 has also to be
checked. Similarly, we define the right identity isomorphisms.
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The associativity isomorphism

o=y amp(xar)(xam <M P (oxyp) " ([XoA]X 2ynp)

has components

=0,y Hoy(Goy F)— (H",G) 5 F
(F € Sana(X,A), G € Sana(A4,M), H € Sana (M. P), etc.), defined through the renaming
transformation % given by the maps

2[X,P1:(ae|H (G F)|(X.P)F— (@e|H . G) F)|(X,P))

(X € Ob(X), P € Ob(P)) thus: if a = fix(xx(s,t), u), then a = dx(s, 7, x(t,u)).

I leave all verifications, including the associativity and identity coherences, to the
reader.

Extending 1.10, we have

SanaCat® and AnaCat are equivalent as anabicategories.

We have not given the notion of equivalence of anabicategories; the formulation of
this notion, and the verification of the last-stated proposition are left to the reader.

5 The effects of weak versions of the axiom of choice

In the previous parts of the paper. we left open whether the bicategory AnaCat is
Cartesian closed. In this section, we show that a very weak version of the AC, one that
is consistent with the negations of most of the usual special cases of the AC, is
sufficient to ensure that the said conclusion holds.

This section is somewhat incomplete; since the first version of this paper was
written, further, and partly better, results have been found, in a collaboration of
Robert Paré and the author; it is planned that they will be described in [15]. On the
other hand, it incorporates substantial improvements that were kindly communicated
to me by the referee.

In this section, we sometimes use classical logic; the marking (CL) indicates
that the result in question depends on classical logic (the principle of excluded
middle).

For sets 4, B, A = B abbreviates that there is a bijection 4—— B. T propose the
following axiom of class-set theory.

Small Cardinality Selection Axiom (SCSA). There is a class-function assigning, to
each set A, a set || A| and a bijection 1,: 4— | A| such that, for each set B, the class
{)All: A = B} is a set.

Of course, under the Global AC (there is a class-function that assigns to each
inhabited set a member of that set), and by using classical logic (whose validity is
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a consequence of the AC, by the well-known argument of R. Diaconescu {(see [9, 5.23,
p. 14]), we have the SCSA in the strong form when {B) = {||A[|: 4 = B} is a singleton;
now, || Al is the usual cardinality of A4; the global version of choice is needed for the
function A — 1.

As the referee has pointed out, and as will be explained below, the SCSA is related
to Blass’ Axiom of Small Violations of Choice (SVC) (see [3, Section 4., p. 417]). This
axiom is as follows.

SVC. Thereis a set S such that, for every set A, there exists an ordinal x and a function
from a subset of $ x x onto A.

The following global version of the SVC was also pointed out by the referee,
although it appeared implicitly in the first version of this paper, as a fact about the
universe of sets constructible from a fixed set.

GSVC. There are a set S and a class-function mapping S x Ord onto V, the class of all
sets.

In [3], Blass shows that the SVC is a “very weak form of the axiom of choice”. It
holds in L(T), the universe of sets constructible over an arbitrary transitive set
T (T e L(T)), and it holds in HOD(T), the universe of hereditarily ordinal definable
sets over T, for an arbitrary set T (use T as a single additional parameter, in addition
to ordinals, in definitions of members of HOD (T')). Moreover, it holds in P. Cohen’s
symmetric models, derived from generic modets, used by Cohen to show the indepen-
dence of the AC. Any of these facts show that SVC is consistent with the negation of
any of a certain class of special cases of the AC; such a special case, call it AC*, may
€.g., be the statement that there is a well-ordering of the set of all reals. If we have
a model M of set-theory in which AC* fails, then there is a (transitive) set T “respon-
sible” for this failure (the transitive closure of R in the example), and L™ (T), that is,
L(T) taken relative to M, will also exhibit the failure of AC*; but L'*" (T ) satisfies the
SVC.

On the other hand, Blass shows the independence of SVC from ZF by a forcing
argument using a proper class of forcing conditions.

All the mentioned results of Blass seem to have straightforward variants for the
GSVC; in the first version of this paper, a detailed proof was given of the fact that
L(T), with T a transitive set, satisfies the GSVC.

The next result, the fact that the GSVC implies the SCSA, is due to the referee. In
the first version of the paper, 1 had the weaker result that, assuming that the AC holds
in V, we have that any standard model of G -B satisfying the GSVC also satisfies the
SCSA.

1. (CL) The GSVC implies the SCSA.
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Proof. Let, by the GVSC, S be a set and E:S x Ord > V a surjection. For any ae V,
let p, be the least ordinal p for which {se S: E(s,p) = a} # @, and let j(a) = {s:s€ S,
E(s, p,) = a}; clearly, j(a) # 0.

Let A be an arbitrary set. Define R, = {p,:ae A}, and let n. R,— i, be the
unique order-preserving bijection of R, (ordered as the ordinals are) onto an ordinal.
Let [All = {(j(a),ma(pa)):a€ A}, and is: A — ||A] be given by is(a) = (j(a),m4(p.))-
Note that [[A| < S x 4,. Clearly, i, is a surjection. But if a,b € A and i (a) = i4(b),
then p, = p;, and picking any s € j(a) = j(b), we have that a = E(s, p,) = E(s, pp) = b;
this shows that i, is also an injection, and thus a bijection, it A= ||Al.

Let B be an arbitrary set. The class C of ordinals that can be mapped into Z(B) in
a 1-1 way is a set (Hartog’s theorem), since the mapping with domain the set %" of all
well-orderings (W, < ) of subsets W of Z(B), assigning to (W, < y ) the order-type
of (W, < w),is asurjection #  — C. Thus, there exist ordinals that cannot be mapped
1-1 into 2(B); let « be any, e.g. the least, such.

I claim that for any A such that A = B, we have that |A| = § xa. Once this is
shown, we obviously have that {B) = {||A||: A = B} is a set as required.

If /: B—« is a surjection, then the map & +— [~ *(&):a — Z(B) is 1-1; it follows
that B cannot be mapped surjectively onto «. But if g: B = 4, then we have

and if also 44 > «, then (x # §) 44, and hence also B, can be mapped surjectively onto
o. It follows that if 4 > B, the 4, < x. Therefore, if A = B, then |A| =« Sxi,cSxa
as desired.

As a consequence of 2 and remarks made earlier, we have, e.g., that

2. (CL) For an arbitrary transitive set T, L (T')" is a model of G-B + SCSA. In fact,
the class-function witnessing the SCSA can be chosen to be a definable class (that is,
definable with parameters in the structure (X, € | X) for X = L (T)).

We turn to the effect of SCSA on anafunctors.

3. (SCSA) (Assume the SCSA.) For any small categories X, A, there is a small full
subcategory A(X,A) of Sana (X, A) such that the inclusion A(XA) — Sana(X,A) is an
equivalence of categories.

Proof. We use the notation of the statement of the SCSA; we write (B} for
{I|All: A = B}. Let I" be the ser of all sets % for which there are a subset S of
Ob(X) x Ob(4) and a function @ € [ [x.4)cs {Iso(A, A))> (Iso (4, A) is the set of all
isomorphisms 4A—— A in A)) such that ¢ is of the form

g= ][] ®X,4) = (X.A)u):ue d(X,A));

(X, A)eS
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indeed, it is clear that I' is a set. The class (in fact, set) of objects of A (X, A4) is defined to
be the set of sanafunctors (saturated anafunctors) G: X — A such that |G|, the set of
specifications of G, belongs to I'. Since I' is a set, and X, 4 are small, it is clear that the
class of sanafunctors described is a set ; A(X, 4), a full subcategory of Sana(X, 4), is
small.

To show that the inclusion A (X, 4) — Sana (X, 4) is an equivalence, we exhibit, for
any F € Sana (X, A), a sanafunctor [F] € A(X,4) and an isomorphism t;: F— [F].
Let F be given. Remember that, since F is saturated, |F|(X, 4) = Iso(4, A) and hence,
IF|(X,A)| € {(Iso(A, A)> whenever X € X, AeA and |F| (X, A) is inhabited (see
section 1, (2')). We put

S ={(X,4)e Ob(X) x Ob(4):|F|(X, A) is inhabited},
IFll= 11 1IFIX.A)];

(X.A)es

this ensures that |[F]| e I', and thus, once [F] is fully defined, that [F] € A(X,A).
Note that we have

[FIl=T1 WIFIX,A); (1)

XeX Ac4

this holds because, in general for any family {C;:i e I> of sets,

LI Ci=1]{Ci:iel, C;is inhabited}.

iel iel

Continuing with the definition of [F], we put, for (X, 4) e S, ue|F|(X, A),
o (X Apu) = X, 1y (X, A)w) = A.

It follows by (1) that
ITFT1 (X, 4) = {(X,A)u):ue | |FI(X,A)]}

for any X € Ob(X), A € Ob(4).
We define the natural transformation 1, via a renaming transformation i : F—— [F];
the mapping

[ X, AL IFI(X, A)— |[F]I(X.Y)
is defined by

Ir [X.AT(0) = (X, A) yr x40 (1)),
with 1p x4 IFI(X, 4) = |||F|(X, 4)| being given by the SCSA. The effect of [F] on
morphisms is thereby determined: we put

[Fls:(f)y=F..(f)

whenever [ X - Y, se|F|X, te|F|Y, =10z [X,A](), T =1 [Y,A1(t). It is clear
that the sanafunctor [F] and the natural isomorphism 1z: F—— [F] are thus well
defined; and as we said above, it follows that [F] € A(X, A4).
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4. (SCSA) For any small categories X, A, there is a small full subcategory A(X,A) of
Ana (X, A) such that the inclusion A(X,A) — Ana (X, A) is an equivalence of categories.

Proof. Combine 3 with 1.10.

The main result of this section is that, under the SCSA, AnaCat is Cartesian closed.
In a natural way, in any bicategory, we say that A% is an exponential of (X, A), with
evaluation e: X x A¥ — A, if for any object Y, the functor

(X x( )»e:Hom(Y,A¥) > Hom(X x Y, A)
YT A% (X x Y 2L X x AX = 4)
is an equivalence of categories; a bicategory is Cartesian closed if it is Cartesian and
has exponentials of all pairs of objects.

5. (SCSA) AnaCat is Cartesian closed.

Proof. By 1.18, Anacat is Cartesian, with the product structure computed as in Cat.
1.14 and 4 imply that exponentials exist; in fact, A (X, 4) will act as an exponential AX
in Anacat, with evaluation morphism e¢:XxA(X,4) - A the restriction to
X xA(X,A) of the map defined in (8), (8') and (9) in section 1.

Since Sanacat is equivalent (as a bicategory) to AnaCat (1.12"), we have
6. (SCSA) SanaCat is Cartesian closed.

Terminal object, product and exponentiation in an anabicategory are defined by
modifying the definitions for bicategories. In a anabicategory, we say that
A <—C-Z5 Bis a product diagram if, for any object D, the anafunctor

(me( —), 7 »(=)):Hom(D,C) - Hom(D, A) x Hom (D, B)

is an anaequivalence of categories. To emphasize the possibly obvious, here
7v(—):Hom(D,C) - Hom (D, A4) is the section of the composition anafunctor

°p.¢c.4. Hom(D,C)x Hom(C, A) - Hom(D, A4)
at 7 € Hom(C, A); or what is the same, the composite of vp ¢ 4 with
Hom(D,C)x "n':Hom(D,C)x1 — Hom(D, C) x Hom (C, A).

AX with e: X x AX — A (evaluation), is an exponential of (X, A) if for any Y, the
anafunctor

(X x(—))»e:Hom(Y,A¥) » Hom(X x Y, 4)

is an anaequivalence of categories.
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T is a terminal object if, for any 4, Hom(A4,T) — 1, with 1 the one-object,
one-arrow category, is an anaequivalenc of categories.

An anabicategory .o/ is Cartesian if it has a terminal object, and binary products of
arbitrary pairs of objects, and it is Cartesian closed if, in addition, it has exponentials.
The definitions of the concepts involved are straightforward versions of the corres-
ponding definitions for bicategories.

7. (SCSA) SanaCat”* is Cartesian closed.

The proof, whose details I leave to the reader, is based on the fact that the identity
mapping is an equivalence of anabicategories between SanaCat* and SanaCat, the
latter understood as an anabicategory, and on the fact that the Cartesian closed
character of an anabicategory is invariant under equivalences. Although the notion of
“equivalence of anabicategories” has not been explicitly stated, the reader will not find
it difficult to complete the proof.

Let me mention that the main result 5 holds with the SCSA replaced by Blass’ SVC.
The proof involves a weaker version of the SCSA, which is a consequence of the SVC,
and suffices for the conclusion of 5. This weaker version of SCSA, will be discussed 1n
the context of indexed category theory over a topos in [15]. The interest of the said
variant of SCSA is heightened by the fact that it holds in all Grothendieck toposes,
whereas direct topos-theoretic translates of SVC do not.

To end the paper, we will consider consequences of the Axiom of Regularity.
Actually, only a consequence having the form of a weak version of the Axiom of
Choice of the said axiom is used; this consequence 1 call the

Axiom of Hierarchy (AH). There is a family (V,:2 € Ord) of sets indexed by the
ordinals whose union | J,. o Vi is the class of all sets.

As is well known, the AH is made true by the Axiom of Regularity through the
von-Neumann hierarchy (V,:a € Ord) of pure (regular) sets. In what follows, we will
assume the AH, and also the validity of classical logic.

The AH gives a metafunction assigning to any class 4 a subset 4 = A such that if
A is non-empty, then so is A4; if 4 is non-empty, 4 = ANV, for « the least « for which
ANV, #0, A =0 otherwise. Combined with the GAC, we have a meta-choice-
function, assigning to every non-empty class an element of it. Therefore, using the
proof of 1.11, we can conclude the foilowing strengthening of 1.11:

8. (GAC, AH) The inclusion FUN(X,4) > ANA (X, A4) is an equivalence of meta-
categories.

(This was observed by the referee, correcting a careless statement I originally made.)
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9. (AH,CL) The inclusion ANA,(X,4) > ANA(X,A4) is an equivalence of meta-
categories. In particular, if X is a small category, the inclusion Ana(X,A4) —
ANA (X, A) is an equivalence of metacategories.

Indeed, given any F € ANA (X, A4), define F e Ana(X,A4) by |F|X = (|F| X))~ (with
the latter ( )~ understood as in 4 — A4 above), and otherwise restricting the data of
F appropriately; 1.1 (iii) for F is ensured by the construction, and all other laws of
“anafunctor” are automatically true for F. We have the natural isomorphism
h:F—— F whose components i, , for s e |F|(X,A) (< |F|(X, A)) are identities.

We can now generalize, under the AH, 1.10 to obtain

10. (AH, CL) The inclusion SANA(X,A4) - ANA(X,A) is an equivalence of meta-
categories, provided A is locally small.

To see this, note that in the proof of 1.10, the construction F# is legitimate provided
A is locally small, and F:X—— A is weakly small; the class Sy, , introduced there is
a set in this case, and we may consider the set of equivalence classes of the equivalence
relation ~ on Sy 4 as needed there. (Note, however, that F* constructed is not
necessarily weakly small.) We obtain the functor ( )* : ANA, (X, 4) —» SANA(X,A)
such that for every F € ANA,,(X,4), F = F* with a canonical isomorphism; that is, in

#

L=()"K
SANA (X, 4) < _ ANA (X, 4)
J Tl
K
ANA (X, A)

where I and J are inclusions, and K is the quasi-inverse of I given by 9, we have
Jo()* =1 But then

JoL=Jo()*Kx=I-K

lie

Id. 2
and

JoLoJ=Jeo()YoKedJx=I-K-Jx=J=J-1d,
which, since J is full and faithful, implies that

L-J=Id (3)
(2) and (3) show what we want.

As an immediate consequence of 9 and 2.6, we have

11, (AH, CL) Suppose that the category A has small limits, and X is a small category.
Then ANA (X, A) and Ana (X, A) have specified small limits.
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Note added in proof

After the completion of this paper, G.M. Kelly drew my attention to his paper
“Complete functors in homology I. Chain maps and endomorphisms” (Proc. Cam-
bridge Phil. Soc. 60 (1964} 721-735). In Section 2, “Generalities on functors”, on page
723, he gives a concept, without naming it, which is identical to that of “anafunctor”.
He gives the definition in both forms as in 1.1 and 1.1* of the present paper. He
presents the concept as the general form the available data for a functor often take; in
such cases, converting the data into a functor requires the class-form of the Axiom of
Choice. He does not attempt to develop a theory of such data; however, he does say:
“one who will not admit such choices [requiring the Axiom of Choice] may work with
the pair of honest functors S, T [in the span-style definition of “anafunctor™] in place
of the dishonest functor . . .”. Thus, the present paper is a working-out of a thirty-year
old 1dea of Max Kelly’s.
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