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Abstract 

The notion of anafunctor is introduced. An anafunctor is. roughly. a “functor defined up to 
isomorphism”. Anafunctors have a general theory paralleling that of ordinary functors: they 
have natural transformations, they form categories, they can be composed. etc. Anafunctors can 
be saturated, to ensure that any object isomorphic to a possible value of the anafunctor is also 
a possible value at the same argument object. The existence of anafunctors in situations when 
ordinarily one would use choice is ensured without choice; cg, for a category which has binary 
products, but not specified binary products. the anaversion of the product functor is canonically 
definable, unlike the ordinary product functor that needs the axiom of choice. When the 
composition functors in a bicategory are changed into anafunctors, one obtains ana- 
bicateporics. In the standard definitions of bicategories such as the monoidal category of 
modules over a ring. or the bicategory of spans in a category with pullbacks, and many others, 
one uses choice; the anaversions of these bicategories have canonical definitions. The overall 
effect is an elimination of the axiom of choice. and of non-canonical choices, in large parts of 
general category theory. To ensure the Cartesian closed character of the bicategory of small 
cateporics. with anafunctors as l-cells, one uses a weak version of the axiom of choice, which is 
related to A. Blass’ axiom of Small Violations of Choice (1979). 

0. Introduction 

In Category Theory. there is an underlying principle according to which the right 

notion of “equality” for objects in a category is isomorphism. Let me refer to the 

principle as the principle (!f isomorphisrn. According to the principle of isomorphism. 

any object isomorphic to a given one should be able to serve the same categorical 

purposes as the given one. Of course, the principle of isomorphism may be read as 

a limitation on what properties of objects are to be considered in category theory; but 
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the principle also carries with it the assertion that by so restricting the properties of 

objects, we are not losing any essential clement of the situation. 

Therefore, when singling out an object with a certain property, we should be 

content with determining the object up to isomorphism only. Indeed, the categorical 

operations defined by universal properties (products, exponentials, etc.) determine the 

object-parts of their values at given arguments only up to isomorphism. The idea 

behind the notion of anr$i~~for., the main new concept in this paper (see 2.1 (i)-(v) 

below; a reference of the form m.n ( ) is to item II ( ) in Section m) is that the same 

principle should extend to values of functors: their object-values are to be determined 

up to isomorphism only. 

General category theory in its usual form does not quite live up to the principle of 

isomorphism; the ubiquitous use of the Axiom of Choice (AC) in general category 

theory is a related fact. A simple example is at hand when, for a category C having 

binary products of objects. we pass to the consideration of “the” product functor 

P = ( ) x ( ): C x C -+ C. The definition of P requires the simultaneous choice of 

a specific product (A z A x B* B) corresponding to each pair (A, B) of objects. 

To be sure, in most esarnp1c.s of a category C such a simultaneous choice can be made 

without the AC; however, we want to use the product functor in the theory for any 

category C with binary products, without knowing anything further about C. Whether 

or not an c.uplicir choice of products is available, something of the cmonicitJ~ of the 

resulting entity (functor) is lost when we make a prrvtir&zr choice of products. 

Actually, talking about tllc product functor becomes imprecise; there are, in general, 

many possible product functors. 

The general form of the above type of use of the AC is in taking “the” adjoint of 

a functor on the basis of the representability of a family of Set-valued functors derived 

from the given functor. Every time we use the Adjoint Functor Theorem to get an 

adjoint, we use the AC in the described manner. 

There are similar violations of canonicity and attendant uses of the AC in the 

definitions of various concrete monoidal categories. and higher dimensional categori- 

cal objects. 

In this paper, I propose a revision of the notion of functor, that of anafunctor, and 

consequent revisions of certain higher dimensional concepts, that makes possible 

a theory based more thoroughly on canonical constructions than ordinary category 

theory, and specifically, that rectifies the violations described above of the principle of 

isomorphism. The revisions are non-intrusive in the sense that category theory with 

anafunctors is of the same general shape as with ordinary functors. It seems that there 

is no limitation of the applicability of anafunctors in any context where functors are 

used. The resulting theory avoids Choice to a large extent (although not completely; 

see below), and still has the same general form as classical general category theory. If 

one employs the full Axiom of Choice, the new theory reduces to the classical one. 

Without the Axiom of Choice, we have a product tr/lafunctor P = ( ) x ( ) : C x C --t C 

d~fifined cat~otticcdl~ on the basis of C having binary products. The adjoint of a(n) 

(una)functor, an unufunctor. is given canonically once the condition mentioned above 



on representability is fulfilled. Anafunctors have natural transformations, which are 

the arrows of a category as usual; categories with anafunctors and natural transforma- 

tions form a bicategory. We have clnabicategories, rrrllrmonoidal categories, with basic 

theories similar in outline to those of their usual counterparts. 

Whereas “anafunctor” is a generalization of “functor” a certain specialization of the 

notion of “anafunctor”, “,sclturcrted unc~jiwtor” is the one that should be regarded as 

the finished form of the concept; an ordinary functor is (usually) not a saturated 

anafunctor. Saturated anafunctors (1.1 (vi)) satisfy the analog of Leibniz’s principle of 

substitutability of equal for equal: if an object in the codomain category of the 

saturated anafunctor is isomorphic to a value of the anafunctor, then it is itself a value 

of the anafunctor at the same argument, “in a uniquely determined way “. It turns out 

that saturated anafunctors are suficient; there is a canonical way of “saturating” any 

anafunctor, the result of which. a saturated anafunctor, is isomorphic (via a canonical 

natural isomorphism) to the given anafunctor. 

The most important difference between using anafunctors and using functors is 

a result of the fact that the category Ana (X,A) of (small) anafunctors between two 

fixed small categories X and A is not small (unless X or A is empty). However, under 

the assumption of a certain weak consequence, here called the Small Cardinality 

Selection Axiom (SCSA), of the Axiom of Choice, Ana (X.,4) is equivalent (in fact, in 

the strong sense) to a small category. Thus. the SCSA ensures the Cartesian closed 

character of the bicategory of small categories with anafunctors and natural trans- 

formations (with “Cartesian closed” meant in the natural bicategorical sense). The 

SCSA is closely related to Blass’ axiom [3] of Small Violations of Choice (SVC), 

another weak choice principle. 

There is a well-known and important approach to category theory relative to 

a largely arbitrary topos. See [2,9. 16, 171. The theory uses the formalism of indexed 

categories [9, 171. or alternatively and essentially equivalently. that of fibrations 

[ 1,2]. Category theory done internally in 8 is a part of indexed category theory over 

A. Indexed category theory over 6 may use the axiom of choice externally. For 

instance. in [17], a form of the Initial Object Theorem is proved, and from this, an 

appropriate form of the Adjoint Functor Theorem is inferred, by the same kind of use 

of the AC as the one that goes into constructing the product functor mentioned above. 

The approach of the present paper is, in a sense, orthogonal to that of indexed 

category theory: neither approach does what the other does, but they can be com- 

bined to work together. When a topos lacks the necessary AC, the product functor 

mentioned above for an internal category with products (where the mere existence of 

products, rather than their specifiability, is assumed internally) does not exist inter- 

nally, and will not exist for the externalization, an indexed category, of the internal 

category. However, the present paper’s approach will provide an internal anafunctor 
in place of the product functor without assuming Choice in the topos. In fact, the 

development of the present paper, can be relativized to any topos. In [ 1.51, anafunctor 

theory will be put into the context of indexed category theory over a topos, and 

a connection will be established with stacks and stack completions. It will be shown 



that a suitable variant of the SCSA, one that is equivalent to saying that internal 

categories have internal stack-completions. will ensure that the bicategory of internal 

categories. internal anafunctors and natural transformations is Cartesian closed. 

The present paper is only the beginning of the development of “anafunctor theory”. 

Let me briefly indicate an area of category theory where anafunctors are relevant. This 

is the general (or universal) algebra of structured categories. The usual kinds of 

structured categories (lex categories. regular categories, (elementary) toposes (in this 

case, use only isomorphism 2-cells). and many more) form /oca//j~,firzitrlj~ prescntuhle 

hicutcywies. The latter have a theory formally similar to that of locally finitely 

presentable categories of [S]. This theory has only partly been codified at the present 

time, but various key elements of it, such as the theory of bicategorical (indexed or 

weighted) limits (see, e.g., [18]), 1 lave been clarified. The sequel [13] will deal with 

locally finitely presentable bicategories and related matters by employing anafunctors, 

giving more canonical answers to existence questions than the usual theory; 

and avoiding the AC. I now give two indications, to be worked out in [13], why 

anafunctors are useful for a “canonical” version of the general algebra of structured 

categories. 

One may maintain that. when dealing with a category C with finite products, it is 

not necessary to invoke the product functor ( ) x ( ) : C x C + C; after all, all that this 

does is to pick a particular product for each argument-pair, and we have the 

experience that in most cases this is not necessary. However, if we want to make the 

theory of categories with finite products (fp categories) a part of the algebra of 

structured categories along the lines hinted above. then the product functor is forced 

on us. In this theory, C inducts a functor (a restricted representable functor) 

C: FPFP -+ Cat on the opposite of the bicatcgory FPr of the finitely presentable fp 

categories to the bicategory Cat of small categories, and the above product functor is 

the value of C at the l-cell [X] + [ Y,Z] in FP, : here, [X] is the fp category freely 

generated by the object X, similarly for [Y.Z]. and the arrow is induced by the 

mapping X + Y x Z. (The mapping C + C is the basic identification of the objects of 

a locally finitely presentable bicatcgory with ;I Cat-valued functor. The reader will be 

familiar with the one-dimensional analog of the described constructions; replace FP,. 

will Ring,, the category of finitely presentable commutative rings with 1, replace Cat 

by Set, take a ring R in place of C, take x to be the multiplication in R, and the above 

with refer to the multiplication-operation ( ).( ): R x R + R.) In brief, the point of 

view of the bicategorical algebra of structured categories necessitates the considera- 

tion of something like the product functor. WC have mentioned that anafunctor 

theory is capable of providing the needed entity in a canonical fashion. 

Another example for the use of anafunctors is as follows. Consider the notion of the 

free structured category .F(G) of a given kind generated by the graph G. For the sake 

of a convincing example, let us talk about categories with finite limits and finite 

colimits (without any further restriction) as the given kind. Suppose G is a finite graph. 

In this case. .F(G) has an explicit description, consisting of iterated formal limits and 

colimits. starting with the generators; in particular, certainly, there is no need for 



Choice in the construction of 3(G). (Andre Joyal has recently given a beautiful theory 

of just this free construction. and its enriched generalizations.) However. to verify the 

universal property of 3(c). against L/II maps cp : G + C into a category C with finite 

limits and colimits, in the usual theory we do need some form of the AC. In fact, we are 

required to construct a functor F : .F(G) + C preserving finite limits and colimits and 

satisfying the initial conditions given by cp. The construction of F requires a series of 

choices of limits and colimits in C, which cannot be done without Choice. The use of an 

anafunctor in place of F eliminates the need of the AC. and in fact makes F canonical. 

Of course, the last example is a crucial one for the general algebra of structured 

categories; in this theory, we would not want to do without free objects such as .‘i;(G). 

Let me turn to remarks on the set-theory used in the paper. 

The set-theoretic foundations used in this paper are “minimal”, and probably the 

reader will have no problem following the paper even if he skips these (brief) 

preliminaries. 

We work in a constructive set-theory with sets and classes. For the sake of 

definiteness, we take as our foundations the Giidel-Bernays (G-B) axioms for sets 

and classes 173. without the AC, and without the Axiom of Regularity (Foundation), 

and we employ intuitionistic predicate logic to deduce consequences of the axioms. 

(We could accommodate ur-elements. but to do so would require some explanations 

that we do not want to give; thus, all things in our theory are classes, and some classes 

(precisely those that are elements of some class) are sets; the axiom of extensionality is 

assumed in an unrestricted form.) We do not use Grothendieck universes. 

The use of the adjective “small” will, as usual, signify that the entity it qualifies is 

a set. Thus. a small class is the same thing as a set. 

A crrtc~lorj,A is given by a class of objects Oh(A), and a class Arr(A) of arrows, with 

further data as usual. Thus, we do not make the blanket assumption that a category 

has small horn-sets; if it does. it is said to be lo~I/y snz~1/1. A .SJJI~/ category has both 

Oh(A) and Arr(A) sets; of course, Arr(A) being a set implies that Oh(A) is one as well. 

A small category can be regarded as a single set (e.g., as a tuple (IA\. h&4), . )), and 

we may talk about the cl~s (and eventually, the ~N~P<~~oY~.) of all small categories. 

Note that a category isomorphic to a small category is small (by the Axiom of 

Replacement). 

Within G-B, one cannot talk about the category of all functors X --t A for two 

fixed, but arbitrary categoriesX,A; there are no collections whose members are proper 

classes. Of course, there is no problem when the categories X, A are small. or even 

when just X is small (since in the latter case functors X + A are (may be regarded as) 

sets). However. within the framework of the formal base-theory G-B, we may 

contemplate r~letaccrtegoric~s; an example is FUN (X,.4), the metacategory of all 

functors X + A and natural transformations. Formally, a metacategory is given by 

predicates (formulas) Ob(X. fj), Arr(,f; F). Dom(,f; X.F), Codom(,f; X.F), Comp (,/;<I, 

I1.F) of the base-theory (in our case, G-B), with the free variables shown, all 

ranging over c~la.ssr.s, together with the assumption that, for a fixed value of the 

parameters F. the obvious equivalents of the category axioms (which become first 



order formulas, having only p as free variables, built up of the given predicates) hold. 

The said assumption may be a consequence of an assumption C(B) on the parameters 

f;. In the case of Fun (X,A). FiisX.A [although a categoryxis given by classes (XI, Arr 

(X), . , these can be combined. although somewhat artificially, into a single class; if 

we do not want to do this, p will be a longer tuplc, listing all the data-classes of both 

categories X,A], and C(f;) is the assumption that X, A are indeed categories. Of 

course, the idea of a metacategory is just one instance of a family of meta-concepts 

similarly fashioned from ;I formal concept such as “category”. One can, e.g., talk about 

CAT, the meta-2-category of all categories, functors and natural transformations; Cat 

is the 2-category of sr?zrr/l categories. functors and natural transformations. 

Let me note that I will usually drop the “mcta” prefix from constructs such as 

meta-functor, meta-natural transformation. etc. 

Although [S] does not mention a formalized base-theory in which the exposition is 

made, it is rather clear that a class-set theory is meant such as G---B; no universes are 

employed. On the other hand, the explicit base-theory in [l l] is Zermelo-Fraenkel 

(ZF) set theory, a theory of sets without class-variables. One universe (a set I/ with 

appropriate properties) is used, and the word ‘small” is reserved for members of U. [l 11 
uses “class” in a somewhat non-standard manner: classes in [l I] are non-small sefs. 

Our base-theory is like that of [Sl; in particular our categories and the categories in 

[S] may be large (classes); the word “small” is used here in agreement with [S]; 

however, [S] does not mention “Inctacategories”. The “metacategories” of [I l] are 

our categories. Our metacategorics are introduced on the same principle as those of 

[ 111, but the difference in the base-theories makes the meanings of the term different. 

The use of the prefix “ana” has been suggested by Dusko Pavlovic. He noted the use 

of “pro-” in category theory (profunctor. proobject), and noted that in biology. the 

terms “anaphase” and “prophasc” are used in the same context. 

At a time when the work on this paper had essentially been completed, Robert Part 

told me that he had had related ideas in the 1970’s. and he had lectured about them at 

a meeting in New York in 1975, although he had not published his work. 

Some time after the first version of this paper was written, I was informed that 

a special case of the notion of anafunctor, and of the notion of natural transformation 

of anafunctors. the case when the domain category is 1, the terminal category, have 

been introduced in [lo], under the name of”cliquc” and morphism of cliques. In [lo], 

cliques are used for certain special purposes: beyond the definition of cliques and their 

morphisms, there is essentially no overlap between [lo] and this paper. For more 

precise references. see toward the end of Section 1 of this paper. 

1. Anafunctors 

Let X and A be categories. An ltttr&tttctor F \cirlz tlotncrin X uncl codmain A, in 

notation F :XL A, or just simply F :X --t A. is given by the following data 1. (i), (ii) 

and conditions 1, (iii) -(v): 



1. (i) A class IF’\, with maps cr:lF( --f Oh(X) (“source”), z: IFI + Oh(A) (“target”). 

\Fl is the class of spec~fic~ations; s E IFI “specifies the value T(S) at the argument a(s)“. 

For X EX (that is. X E Oh(X)), we write (FI X for the class (s E IFI :a(~) = X). and 

F,(X) for t(s); the notation F,(X) presumes that s E IFI X. 

(ii) For each X, Y EX. .y E IF( X, J E IFI Y and ,f’: X ---f Y( E Arr(X)), au arrow 

F,, v(,f’): F,(\-) --f F,.(Y) in A. 

(iii) For every X EX, IF X is inhabited. 

(iv) For all X EX and s E IF( X. we have F,,,(lx) = l,%.,. 

(v) Whenever X, Y, ZEX. ~EIFIX,J~EIFI Y, ~EIF(Z. and 

(a circle in a diagram means that the diagram commutes), i.e., 

With any given XEX, AEA, we put IF( (X,A),, (~EIF(X:F,(X) = A). 
The anafunctor F:X + A is locall! sr~rrll if all the classes IFI(X, A) (X EX. A E A) 

are sets. It is rceakl_t, sr~ull if the classes IFI X are all small (X E X); thus. “weakly small” 

implies “locally small”. Finally, F is .snrull iff it is weakly small, and the cateogry X is 

small. Notice that if F is small. then it is given by a srt of data, beyond the data for A; 

in particular, we may consider the &s.s ($‘a11 small anafunctors with a fixed codomain 

A, an arbitrary (not necessarily small) category. 

If F:XAA, and s E IFI X, t E IFI X. then F,,,,(l,): F,,X + F,X is an isomorphism, 

with inverse F,,,(l,). In particular, the r~rlue of F at X, F,(X), is determined up to 

isomorphism. 

Any (ordinary) functor F:X + A is, essentially, an anafunctor, by putting 

IFI = Oh(X), o(X) = X, s(X) = F(X) (thus (F1 X = (Xi), with the obvious specifica- 

tion of the rest of the structure. 

A more abstract way of defining the concept is as follows. A discrete category is one 

in which all arrows are identities; an crntidisuvte category is one in which for any pair 

(U. V) of objects, there is exactly one arrow U + V. A discrete (mtidi.scrcte) opfibra- 

tion is one in which every fiber is a discrete (antidiscrete) category. A discrete 

opfibration is a functor G :S + B such that for any N : A --f B in B and S E G- ‘(A), 

there is exactly one arrow s: S -+ T with some T E G ‘(I?) such that G(s) = LI; an 

antidiscrete opfibration is a functor G:S + B such that for any u: A + B in B, 

SE G-‘(A) and T E G-‘(B), there is exactly one arrow s:S + T such that G(s) = u. 

Now, 



Indeed. with F:X + A being an anafunctor in the original sense, we let (F( be the 

category whose object-class is what was IFI above, whose arrows,f’:s + J’ are the 

same as arrowsf: a(r) ---t (r(j*) in X. with the obvious composition; F, is the obvious 

forgetful functor (clearly an antidiscrete opfibration); F, maps s to T(S) andf’: .L’ + J‘ to 

F,.,(f’). Conversely, if we have an anafunctor in the new sense, we put the object-class 

of JF( for IFI in the old sense, 0(.x) = F,(\-), S(T) = F,(.u), and forf’:X -+ Y in X, x, 

J’E IFI with F,(r) = X, F,(J) = Y. we put F,, ,.( 1’) = F,(f) for the unique,f:s + J 

for which F,,(,f?) =.f: 

2. Example. Suppose the category A has binary products; that is, for every A. B E A, 

there is at least one product diagram 

Then we have the following anafunctor P :A x A + A. lPl consists of all product 

diagrams of the form (1); for s the diagram in (1). a(s) = (A, B) and r(s) = C. In the 

formulation of l*, 1 PI is the category of all product diagrams, where arrows are given 

as in (2) below. In other words, for (A, B) E A x A, 1 PI ((A, B)) is the class of all product 

diagrams (1). with the given A, B, but all other data variable; for s E lPl((A, B)) given by 

(l), P,,((A, B)) = C. For s E ) PI((A, B)) given by the data in (l), and s’ E 1 PI((A’,B’)), 
given by data as in (1) but primed. and for (,/<I): (A, B) + (A’, B’) (E Arr (A x A)), 

P,s,s,((,f; (1)): C + C’ is the unique 11 making the diagram 

(2) 

commute; the universal property of the product consisting of the primed data ensures 

that P,,,5.((.f;g)) is well-defined. It is fairly clear that conditions l.(iii)Hv) are all 

satisfied. 



The above-defined P is the prodUl.t-LttzL!fLIn(.tOT for the category A. “replacing” the 

product-functor (A,B) --f A x B. Whereas the definition of the latter requires a non- 

canonical choice of a particular product A x B for each pair (A, B) of objects. and thus. 

in general, for its definition, the product-functor needs the AC, the product-anafun- 

ctor does not involve any non-canonical choice. in particular. it does not need the AC. 

Of course, it is still to be demonstrated that the product-anafunctor does enough of 

the job of the product-functor, for it to be a reasonable replacement. At any rate. it will 

turn out (see below) that if the product-functor exists, then the product-anafunctor is 

i,sotwrphic to it, by an appropriate notion of (natural) isomorphism. 

An anafunctor F :XA A is ,mturutd if it satisfies the following additional condi- 

tion: 

1. (vi) (uniqw ttxnsfer) Whenever s E IF\ (X, A). and ~1: Aa B is an isomorphism (in 

A). then there is a unique t E IFI (X,B) such that ~1 = F,,,(l,). 

With F an anafunctor, and continuing with the above notation, if (F\(X. A) is 

inhabited, then A is a possible ~cllue of F at the argument X. Note that the possible 

values of F at a given X form a subclass of an isomorphism class of objects in A; if F is 

saturated. they form a complete isomorphism class. 

An anafunctor determines its values at least up to isomorphism; a saturated one 

determines its values e.wc.tlJ* up to isomorhism. Among anafunctors, the ordinary 

functors and the saturated anafunctors represent two extremes; our ultimate goal here 

is to promote the use of the saturated anafunctors as the ones that stand for the point 

of view that objects (in this case the values of the anafunctor) should be determined 

ezrrctl!. up to isomorphism, just as they are when they are determined by a universal 

property. 

2. Example (cmtitwd). The product anafunctor P: A x A --t A is saturated. as it is 

immediately seen. 

Note that if F :X + A is saturated, X E X, s E IF 1 (X, A). then for any B E A we have 

the bijection 

IFI (X. B) -fL Iso (A. B) 

t- F,,,(l.). (2’) 

This bijection is not canonical; it depends on the choice of s E IFI (X. A). Nevertheless, 

it follows that for a saturated anafunctor F :X + A, if A is locally small, then so is F, 

and if both X and A are small, then so is F. 

Assume F :X + A is a saturated anafunctor. We have a form of “isomorphic 

transfer” not only for the values but also for the arguments of F. More precisely, 



Let us fix ,f’: X -2 Y and ~1: A 5 B. Let s E JFI (X, A); 1 claim that there is 

a unique t E IF/ (Y, B) such that F,,,(,j’) = g. Once this is shown, for any t E IFI (Y, B) 

there is a unique s E (FI (X. A) such that F,,,, (,f’-’ ) = fl, that is, F,,,(f) = y, and the 

definition above indeed gives a bi.jcction s F+ t. 

Let to E IFJ Y, s E IF/ (X, A), t E JFI (Y, B). and consider the commutative triangle 

consisting of isomorphisms. It follows that saying that F,,,(,f’) = g is equivalent to 

saying that the triangle 

commutes. But by 1 .(vi), for any g : A AB, there is a unique t satisfying this latter 

condition. that is, F ,,,,, (1J = (1 (F, .,,, (.f’))- ‘. 

With X* denoting the groupoid of all isomorphism in X, and similarly for A*, we 

have, 

4. With F: X -+ A a srrtur.trtcd trrlr!fim’tor, the nluppiny in 3 dgfincs a ,functo, 

X* x A* --f SET: 

X*xA*---S SE-I‘ : 

(X.4) t-+- IFI (X,4) 

(./.R) 
1 

s ++I 
1 

(Y,B) I-s IFI C Y,B) 

Equivalently, 



5. AH url~~fl4t7cmr. IIS in I * is satwared if the indud ,fimc.tor IFI* 4 X* x A* is 
0 rli.scr.ctc opfihfiou. 

k 

A ntrtur.trl rr.tr17.\fi)l.l)l~ltiOll h : F + G of anafunctors XzG3 A is given by 

6. (i) a family (II,., : F,X 4 G,X),, F.y,,F ,, , s. , i ,(+ of arrows in A such that 

(ii) (rxrt~rr.trlif~~) for every,f’: X ---t Y in X, and for every s E IF(X, t E /GJ X, u E IFI Y, 

I’ E (GI Y. the square 

commutes. 

An equivalent definition is this. Given anafunctors (X k- (FI 5 A), 
(X*1GI$+A)inthestyleofl*, a natural transformation from F to G is the same 

as a natural transformation h in the usual sense as in the following diagram: 

Continuing with the notation of 6, note that if s, II E IF( X, t, r E (GI X. then II,,, ,. is 

determined by h,, t; this is because of the communtativity of 

Suppose we have a family ((si E IFI Xi, fi E ICI Xi))is, such that for all X EX, X = Xi 

for some i E I. Suppose we have (/Ii: F,,(Xi) + G,(X,)),,, such that the naturality 



condition (3) holds for these data, that is. 

for any i, ,j E I, and,/‘: Xi + Xi. 

The rest of the data for /I are determined by appropriate instances of the diagram 

(4). 
For any anafunctor XI: il, we have the iderltitJ natural transformation 

lF:F + F, defined by (I,;),,,,; F,,,(l.):F,X -+ F,X. Naturality of IF is a conse- 

quence of 1 .(v). As a consequence of 7. /z : F + F is equal to 1 F iff h,,, = 1 F, Y for all 

XEX, SE/FIX. 
Composition k h : F 4 H of II. I< in 

F 

m 

is defined in the expected manner: for s E IFI X. ~1 E 1 H 1 X, (k 
composite of F,XL!+ G, XL’& H,,X, with any t E IG1 X; 

6. (iii) (k 12) ,,,, ,,; k ,.,, J h.,; 

/I),,,, : F,?X -+ H,,X is the 

for one thing, such t exists; for another, with arbitrary t, t’ E IGI X, the commutative 

diagram 

c,., (4) 

I ii,, i = HP, ,, ( ’ 1 ) 

i h 
I, 



shows that (k I?),,,, is well-defined (independent of the choice of t). The naturality 

(6.(ii)) of k h so defined is seen immediately; and so are the associativity of the 

composition of natural transformations, and the identity character of the identity 

natural transformations. 

2. Example (c~~nti~~ucu’). Q : A x A -L A qualifies as o product-anafunctor if. for any 

A. B E A, there is a mapping associating with any s E IQ1 ((A. I?)) a product diagram 

Q,(A,B) 

such that, for any s E IQ1 ((A. B)). t E IQ 1 ((A’. B’)), a: A + A’, h : B --f B’. we have that 

commutes. Certainly. any product-functor, making a choice of each product, will. as 

an anafunctor. satisfy the stated condition. But notice that any such Q is isomorphic to 

P: with s E (P( ((A.@) as in (1). and t E IQ1 ((A,@), we can put h,Y,,: C 4 Q,,(A,B) to be 

the unique isomorphism i that makes 

commute; h so defined is an isomorphism Pa Q as it is easily seen. In particular, if 

the product-functor exists, it is isomorphic to the product-anafunctor (which always 

exists). 

Given categories A, X with X small, Ana(X,A), Sana(X,A) denote the categories of 

all sr~rrll anafunctors. respectively s~~~~ll saturated anafunctors, X + A; arrows are the 

natural transformations, with composition as given above: Sana(X,A) is a full sub- 

category of Ana(X,A). When A and X are both small, we might still have anafunctors 

X --+ A that are not small: however, as we said above, all saturated ones are small, and 

thus belong to Sana(X,A). We should point out that if A has an isomorphism class of 

objects which is not small (a very common occurrence), and F :X + A takes a value in 

such an isomorphism class, then F cannot be saturated and small at the same time; the 

category Sana(X,A) is of importance mainly when both A and X are small. Let us also 



point out that, for smallXand A, Ana(X,A). and even Sana(X,A), cannot be shown to 

be equivalent to a small category; however, a weak version of the AC will suffice for 

this last conclusion; see later. 

For convenience of expression, we will talk about the metacategories ANA(X,A), 

SANA(X,A) of all anafunctors, resp. saturated anafunctors X + A, with natural 

transformations as arrows. The notations ANAI,(X.A), SANA,(X.A), ANA,,,,s(X,A), 

SANA,,,,(X,A), referring to “locally small”. resp. “weakly small” anafunctors, are 

self-explanatory. The latter are full subcategories of ANA(X,A). 

Recall the identification of any functor G :X --t A with an anafunctor; the latter is 

obviously weakly small. This identification extends to natural transformations, and 

we have a fully faithful functorj = iv. ., : FUN(X,A) --f ANA,,, (X,A), to which we will 

refer as an inclusion. 

lt is easily seen that if h: F + G is a natural transformation, then h is an isomor- 

phism in ANA(X,A) iff each component h,,, is an isomorphism (in A) (for l7- ’ defined 

by(h-‘) ,.,s = (/I.,.,)-‘, weget K’ h = I,:, h hm ’ = ic because the s. s-components of 

both composites are identities). 
b 

Given anafunctors X: 

h = (~7CX>4)X.Oh,XI. l,OL 

A, II rc~nrrr77irq f~arz.~for.7lztrtio12 /?: F---t G is a system 

of bi.jections h[X.A] = (s w S):JFI(X,A)A /GJ 

(X,A) preserving the effect of the anafunctors F, G on arrows: F,,,,(f) = G,, (f’) 

whenever,/‘: X --f X’ is an arrow in X. A E A. s E JF1 (X, A), s’ E IF/(X’, A). Continuing 

the above notation. 

11: FL G for which h,,, , = I.,, (s E lFl(X,A)); condition (3’) holds because of the 

assumption on effect on arrows (in general, h,,, = G<.,(l,) (s E IF/X, t c ICI X)). We 

now will see that for saturated anafunctors, natural isomorphisms and renaming 

transformations are in a bijective correspondence. 

Suppose that F, G E SANA(X,A), and 17: FL G. Let us fix X EX. Note that the 

isomorphism 17 in particular ensures that any possible values A, B of F, resp. G, at 

X are isomorphic; hence, the possible values of F and those of G at X are the same. Let 

A be any common possible value at X. I claim the following: 

8. For anq‘ s E IFI (X,A), thew is II ur7ique t E (Cl (X, A) such that h,., = 1,. 

Indeed, let so E IFI(X,A), to E IG/(X. A), and consider, with any s E IFI(X,A) and 

t E ICI (X, A), the following commutative diagram of isomorphisms: 

h 

A 
(0 ‘I, 

,A 



This implies that I?,V, I = 1 A iff 

commutes; the last condition determines G,,,.,( 1J in terms of (Q,. f, and) s; by unique 

transfer ( Ifvi)), there is a unique I with this property. 

In this argument, we used that G was saturated; using also that F is so, we get 

9. For h: Fa G in SANA(X,A), X E X, A E A, th condition h,,,, = 1,4 ,for 

s E IF\(X, A). SE /GI (X. A) esttrhlidws m h{jection (s t-t S): IFI (X, A)& ICI (X, A) .for 
\t,hich F,,,( ,f‘) = G,, i( f) hold.s fiw all f: X + Y, s c IF / X, t E IF 1 Y. 

Therefore by 7’ also, we have the following. 

Let us emphasize (in view of the lack of AC) that a functor @: C + D is an 

~~~~ZII’IYIIPIIW c!~(r,l~t~~)~.~tc’~~rlt,I.iC’S if there exist a functor Y : D + C and natural isomor- 

phisms x: lcA Y@, fi: l,a @Y. Note that if the functor @:C --f D is full and 

faithful, and there exists a function Y:Ob(D) --f Oh(C) together with a function 

D H /I,, assigning an isomorphism Pn: D -% @yD to each object D ED (for which 

we say that @ is un~fi~n~l~~ e.ssenticrl/~~ surjrctiw), then @ is an equivalence; in fact, there 

is a unique way of making ‘P into a functor Y: D -+ C and defining the isomorphism 

x: l,.L V@ so that ( /jD)D becomes an isomorphism p: I,5 @Y. and XY = ‘Y/I, 

p@ = @2. 

Proof. Let FE Ana(X.A); we define F# E Sana(X,A). called the saturatiorz of F. as 
follows. For X E X. A E A, we let Sx, ., be the set of all pairs (s E IF\ X, ~1: F,?X 2 A). 
Let - be the relation on Sx,a defined by 

fi;, (1,) 

(.s, ,o - (.s’, /I’ ) s Exq---yx commutes. 



It is immediately seen that _ is an equivalence relation. We put (F’j (X,A) to be 

S X,.4, / - , the set of equivalence-classes [.s,jl] of elements (.s,~l) of Sx,,4. Given 

II = [s,,u] E (F# 1 X, h = [f, r] E IF” / I’ and,f’: X -+ Y, Fzh(,f’) is defined so as to make 

the outside rectangle in the diagram 

commute. The commutativity of the rest of the diagram shows that the definition is 

independent of the choice of the representatives. It is easy to see that 1 (iv), (v) hold for 

F” so defined. To see l(vi) for F”, let (I = [s, ,L] E JF* 1 X, and let /I : F,# XG B; we 

want that there is unique h = [t. r] with B = Ff X and F$(l,) = p; this means that 

should commute; we can take h = [s, ~1 ,l] to satisfy this; clearly, the commutativity 

of (5) implies that (t, V) - (s, p ,M). which shows the required uniqueness. 

We give tlF:F’A F# (FE Ana (X.,4)) as an application of 7. We let I = IFI, ((Si, 

ti))itl = ((h C.h ld),t~H. with X,, = CT(S), and abbreviating [s, l,,,,] as S, we let, for 

s E (FIX, (~j~),~: F,y(X) --f F,‘(X) be the identity l,>,,. It is immediate that )I,; is 

a natural transformation (by 7; (3’) now holds), and that it is an isomorphism. This 

completes the proof of 10. 

Let us note the effect of the saturation functor ( )# :Ana(X,A) + Sana(X,A) on 

arrows. Given h: F + G in Ana(X,A), u = [s, ii] E F# X, h = [t, v] E G# X, /I,:~ is 

defined so as to make the outside rectangle in 

h:‘,. 

4 /I 

’ G:X 



commute; the rest of the diagram shows that the definition of kzh is independent of the 

choice of the representatives; it is easy to see that h* so defined is a natural 

transformation F” -+ G*. Further, it is easily seen that ( )” so defined is a functor. 

The functor ( )” is the same as the one obtained from i and (11~)~ in the remark before 

10. denoted by Y there. 

Given a weakly small anafunctor F:X + A, using the Global Axiom of Choice 

(GAC), the existence of a class-function that picks an element of every inhabited set, 

we let (X EX) H ss E IFI X be a choice-function, and we consider the functor 

F’:X + A for which F’(X) = F,,(X). F’(,f’:X + Y) d~r F,,,,,(,f):Fk-t F’Y (it is 

immediate that F’ is a functor). We also have, with any F as above, a natural 

isomorphism % : F + ,jF’ (with ,j the inclusion of functors in anafunctors) defined by 

(q,:F,,X + I;,,X),,(F,.,,(ls):F,X + F\,X). 

Making the choices involved simultaneously for all F E ANA,, (X.,4), we obtain. using 

the GAC, that 

11 is reassuring since it says that we have not strayed from the notion of functor too 

far. 

It should be noted that, without any choice. 

Proof. Let F:X + Set be a small anafunctor. An elcrncr~t of’F lit X EX is a family 

.\’ = (.\-,>\& , , such that z,~ E F,X, and (F ,,,, ( lx)) (s,>) = .v, for s, t E IFI X. Clearly, any 

component .y\ of z determines the whole of s. and in fact, any pair (s E IFI X, (I E F,X) 

determines a unique element s at X for which s, = LI; let us denote s by [s. (11. 

Given F. we define the functor F :X --f Set as follows. We put P(X) equal to the set 

of all elements of F at X. We define, for,/‘: X + Y, the function E(,f‘): P(X) + j;(Y) 

by putting E(,f’) (.y) equal to the unique element 1’ at Y for which J*,, = F,,,,(,f‘) (x,,) for 

any (equivalently. for some) pair (s E IFI X, II E IFI Y ). It is easily seen that F is 

well-defined as a functor E? :X --f Set by these stipulations. We have the natural 

isomorphism xF: FA e whose components (z,:).~, x: F, X --f PX are given by 

(+),, ,y(a) = [s. rr]. This completes the proof. 

Many concrete categories (categories of algebras. of topological spaces, etc.) that 

have a faithful forgetful functor to Set share the property of Set stated in 11’; I do not 

see how to make a general-enough statement of this state of affairs. 

Another, rather obvious. case of this situation is in the next statement. 



(By “S is finite”, we mean “there are a natural number n and a surjection 

(i:i < n) + S”.) Note, however, that we cannot say that the inclusion Fun(X, 

A) + Ana(X,A) is an equivalence even when X is 1, the terminal category. 

We turn to the composition of anafunctors. Let XL A@+ M be anafunctors. 

There is a natural composition G F:X ---f A. also written just GF, an anafunctor, 

defined as follows. For X E X, WC let IGFJ X be the class of all pairs 

(in other words, 

(6) 

and for m as displayed, (GF),,,, G,(F,,(X)). Note that if also A4 EM, 

lGFl(X,M) E u IFl(X,,4)xiGi(A.,ZCr). 
dEl 

For the action of GF on arrokvs, with (I as above, and with h = (U E IFI Y, 

CE jGl(F,,X)), and withJ’: X + Y. we put (GF),J /‘),z G,.,.(F,,,,(f’)). It is immediate 

that GF is an anafunctor. 

It is immediate that the composition of weakly small anafunctors is weakly 

small. If F and G are given by the spans (X t IFI --) A), (A + JGI --f M), then the 

composite GF is given by the “composite span” (X +- IFI x A ICI + M). 

We can extend composition to a functor 

ANA(X,A) x ANA(A,M)---t ANA(X.M) 

in a natural way. With data as in 

(7) 

(8) 

first we define (/I, l,), denoted I/z. by 

here,u=(.sEIFIX,t~III(F,X)),h=( u E IG X, 1‘ E 111 (F,, X)); the naturality of Ih is 

immediate. 

In defining ‘(I,:, k), denoted h-F, WC make use of the fact that, to specify a natural 

transformation of anafunctors. it sufIices to specify “enough” components of it, with 

the appropriate naturality conditions satisfied (see 7). Accordingly, let CI = (s E IFI X. 

t E 111 (F,,X)), IJ = (s E IFI A’. II E lJl(F,sX)); we let (kF),.,,:(IF),(X) + (JF),(X) be 

(AT),,,,,, k,.,,: I, F,(X) + J,, F,(X): the (needed partial) naturality of kF is immediate. 



1’7 

Next, we need to verify that thus we have defined functors 

( ) I: ANA(X,A) + ANA(X.M), 

F ( ):ANA(A,M) + ANA(X.M); 

we leave the task to the reader. 

Finally. we need that 

commutes. With evaluating I F at (s E (FIX, t E lll(F,X)), J G at (U E (Cl X, 

L.EIJI(G,,X)), I G at (uE(G/X, n~~)1I(G,X)),and J’F at (.sEIF(X,~E(JI(F,~X)), 

the diagram becomes 

f, /> ( h\ /, 1 

J,\(h\,,) 
> J, G,,X 

whose commutativity is an instance of the naturality of k. By 7 again, this suffices. 

It is well known (Proposition 1, 11.3, p. 37 in [ll]) that what we did above 

determines uniquely the functor (7). 

It is clear that. for X and A small, (7) restricts to a composition-functor 

Ana(X,A) x Ana(A,M)- Ana(X,M). (7’) 

Let us turn to the question of associativity of composition of functors. With anafunc- 

tors 

XLAG‘MASS. 

we find the associativity isomorphism 

x = z~, G, I, : H(GF)A (HG) F 

given (see 7’) by the renaming transformation X for which 

x [X, S] : ((s, f). II) H (s, (t, u)) 

whenever X EX. s E IFI X, t E IG( (F,\ X), u E JHI(G,F,(X)), S = H,G,F,(X). It is easy 

to see that x~,~,~, is natural in each of F. G and H, and that the pentagonal 

associativity coherence diagram ((1.1) (A.C.) in [l], pp. 5 and 6) commutes. With the 



identity functor 1, :A + A as an anafunctor. we have the left and right identity 

isomorphisms 

(see (8)) defined by (&I ,,,.. y,.‘,. \ = 1, , (s E IF I XL and similarly for pF. Both RI; and flF 

are natural in F, and they satisfy identity coherence ((1.1) (I.C.) /oc..ci~.). 

We have the ingredients of a metabicategory (see lot. cit.). 

12. Conclusion. C~4trgorks. ~tmtfltttclors lwtblwt7 thm~, Nnd notrrral ~run.~f~irtllalion.s 

hetwccw tlw latter ,fi)rtn. \l,itil tiw qirctt notions of con~po.sitictn, (I ttietn-hic*cltcgor! 

ANACAT. The ident$cdott of’ot~~lit~~~r~~,fittl~.tor~ lcith unqfi4nctor.s proclidc)s mn inclu- 

sion i : CAT --f ANACAT (CAT i.s the tttrt~t-2-c~trte~Jor~~ of catqqories, ,functors and 

iZ~lturd tr~tn.~fiirmution.s), \clzich is tlw idcvitit~ OII objects, and locally .fill~> ,ftiithfiil. 

WC d.so hove the hicutrqor~~ AnaCat of’mull crttqories, smull nnufunctor,s hetwen 

tkw, ctnd ull nutwul frrrtt.~fitrtttrrtiott~s het~~~~rn the ltttter. The 2-cutegor), Cat of smmll 

ccttrgories bus N loctrll~~,firll~~ ,firithfitl inclusion into AnaCat, \chich is cm equi~dcww of 

hicotryories prcwirlrd the Asiom of Choice ho1tl.s. 

G.M. Kelly gave us once the healthy advice to use simple terminology in higher 

dimensional category theory. For instance, “functor” of bicategories should mean 

“homomorphism of bicategories” ; a functor between bicategories cannot reasonably 

mean anything but a mapping that respects the whole bicategory structure and not 

just the reduct to the category structure. Similarly, “product” in a bicategory should 

mean what is usually called “hiproduct”. Also. I say “equivalence of bicategories” for 

“biequivalence”. (As a reminder. I nc?te that by an cquidencr of hicatcgories .Y and 

.c/, I mean a pair of functors .Y’G .tJ such that GF = l,,, FG = I,,, the latter 

equivalences meant in the metabicategories of endofunctors of .Y, ~1, respectively. As 

usual, we say of a single functor /:: .Y ---f .J that it is an equivalence if it can be 

expanded with further data to form an equivalence.) Maybe I am carrying Kelly’s 

advice farther than he intended; I hope no confusion will arise. 

Small categories with saturated anafunctors between them also form a bicategory 

named SanaCat, which is equivalent to AnaCat. This is a consequence of 10, together 

with the fact that, in the proof of 10. the isomorphisms ~1~: are obtained uniformly from 

F not just within a given Ana(X.A ), but also uniformly in the variables X, A. 

In some detail, SanaCat has the following structure. With reference to the satura- 

tion-functor 

( )” = ( )z.,,: Ana(X.M) + Sana(X,M) 

(see lo), a composition-functor in SanaCat, 

B = gA,,+,: Sana(X,A) x Sana(A. M) + Sana(X,M), 
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is defined by G CJ# F = (G ‘1 F)#, and correspondingly for natural transformations. The 

associativity isomorphisms 

x;.~.~:H ,“(G’“F) + (Hn#G)-#F 

are determined so as to make 

I, 4, ii 
H ,#(G’“F) - (Hn#G)o’F 

‘I t 

Hu(Go*F) 

H 11 1‘ 
Ho (GcF) s! > 

,. c; i, 

‘1 

(Ha’ G)oF 

t rlF 

(Hc G)oF 

commute. 

Using 10, we can see that 

12’. The inclusioJz Jnupping SanaCat + AnaCat is an equivalence of &categories. 

It is more natural to make the totality of small categories, with saturated anafun- 

ctors between them, an anahicategory in which composition is an anafunctor; see 

Section 4. 

TerJninal object and product in a (meta-)bicategory are defined as expected by 

universal properties defining the result of the operation up to an equivalence rather 

than isomorphism. Placing ourselves in a fixed (meta)bicategory, we say that 

A AC’& B is a product diagram if, for any object D, the functor 

(n( - ), rc’( - )): Hom(D, C) + Hom(D, A) x Hom(D, B) 

DL C I-+ @f,7~‘f) 

is an equivalence of categories. As usual, A LA x B 5 B denotes, ambiguously, 

a product diagram on (A, B). 

T is a terminal object if, for any A, Hom(A, T) --+ 1, with 1 the one-object, 

one-arrow category, is an equivalence of categories. 

We say that a bicategory is Cartesian if it has a terminal object and binary products. 

13. AnaCat and ANACAT are Cartesiun 

In fact, the Cartesian structure in ANACAT (AnaCat) is computed as in CAT (Cat). 

The Cartesian closed nature of Cat, the (2-)category of all small categories is 

a fundamental fact. What prevents AnaCat from being Cartesian closed is that, for A, 

X small categories, Ana(X,A) is not neccessarily equivalent to a small category. In 



Section 5, we will see that a weak form of the AC will ensure this, and hence the 

Cartesian closed nature of AnaCat. Here, we give the relevant facts that hold without 

further set-theoretical hypotheses. 

We first formulate a characterization of anafunctors of the form F :Xx M + A, 
(“bi-anafunctors”) analogous to Proposition 11.3.1 in [l 11. Suppose we have 

classes IFJ ((X, A4)) (X E X. M E M). 

objects E,(X, M) EA (s E JFJ ((X,M))), 

arrows F,,,(ji M): F.&C M) + F,( Y, ML 

such that 

(i) for any X E X, the data define an anafunctor Fx = F(X, - ) :A# -+ A 
( jFxJ M = IF] ((X, M)), etc.), and similarly for F( - , M) :X + A; 

(ii) for any,f: X + Y inX,g:M 4 N in M, and for all appropriate specifications, 

the diagram 

commutes. Then we have a unique anafunctor F :Xx M + A having as sections 

F (X, - ), F( - , h/l) the given data. 

I leave the verification to the reader. 

Given categories X, A, we consider the metacategory ANA (X, A), and the evafuucinn 

anafunctor 

t’ = ex..A :Xx ANA(X,A) -+ A (8) 

determined as follows. For X EX, F E ANA(X,,A), 

for s E IFI X, 

LJs(X, F) gf F,(X); 

with also u E (FI Y,f:X -+ Y, 
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With II: F + G ( E Arr (ANA(X,A))), t E JG( X, 

%.r((X.h)) d3. hs,,; 

the diagram 

e, ,,( .f. b‘ ) e,,(f,G) 

e,,(Y,F) vq(Y,G) /<, . 

is identical to 

E ,,(f‘) 1 I G, ,cf) 

F,,(y) h G,(Y) 
/, , 

which commutes by the naturality of h. This shows (by the characterization of 

“bi-anafunctors”) that t’ is an anafunctor. 

Whereas c’.~,.~ in (8) is a metafunctor, for X small, its restriction 

~,v,,:Xx Ana(X,A) + A (9) 

to Ana(X,A), the category of small anafunctors X --f A, is a functor (denoted by the 

same symbol as the metafunctor in (8)). 

In propositions 14, 15, 16 and 17 below, X, Y are small categories,,4 is an arbitrary 

category. 

14. e = c~.,~ (see (9)) induces an equicalence of categories 

yd,f t’ (Xx( -)):Ana(Y, Ana(X,A))a Ana(Xx Y,A). 

15. The inclusion 

i: Fun(Y, Ana(X,A))A Ana(Y, Ana(X,A)) 

is an rquicaknce qf categories. 

Note that 15 implies that Ana(X,A) shares the property of Set given in 11’. 

16. There is an isomorphism 

I) : Fun(Y. Ana(X,A))L Ana(Xx Y,A) 

of cutegories,for which $ z i y. \vith i and y.fLom 15 UIK! 14. 



Proof of 14, 15 and 16. The functors in these assertions form the diagram 

Ana (Y, Ana (X, A)) >Ana (XxY,A) 

We will define $, show the properties given in 16, and show that cp is full and faithful. 

Since i is full and faithful, both assertions 14 and 15. will follow. We will have that, in 

(9), all three functors are equivalences of categories, one in fact is an isomorphism. 

Given HE Ana(Y, Ana(X,A)), X EX, Y E Y, we have 

fP(XX H)I ((X, Y)) = {((X,n),.s):iC E IHI Y, s E (H, Y 1 x) 

(remember that Jel ((X, H, Y)) = IH, Y I X) and 

(e 7 (Xx Hhcx,,,~.s, (X3 Y) = (H, Y 1s X- 

Let also K E Ana(Y Ana(X,A)). A natural transformation h: ec’(Xx H) + en(Xx K) 

has components 

h ((x,ci),~+i, ((x.w.rj : (Ha Y 1,s X --) (K,, Y), x. 
Starting with h, we define .i: H + K by specifying the natural transformation 

j&b: H, Y -+ & Y by making h.bL : W, Y), X --, Kb Y>J equal to hccx,.,,.sj3 ijX,h).fJ. 

This works, andj is the unique natural transformation H + K mapped by the functor 

(9) to h; this amounts to the fact that cp is fully faithful. 

Given the small anafunctor G :Xx Y --+ A, we define H = t,b- ’ (G), H: Y + 

Ana(X,A) as follows. With Y E Y, H (Y):X + A is the (obviously small) anafunctor 

G(-, Y), thatis 

IHWI X = IGI ((X> Y)L (WY)),X = G,(X, Y) 

and 

W(Y)),,,(f) = G,,,(f; Y 1 (.y E IH( X, t E IfWl x’,f:x -+ X’); 

moreover, for g : Y --) Y’, H(g): H(Y) + H( Y’) is the natural transformation for 

which 

Conversely, given any functor H : Y + Ana (X,A), the listed equalities define a unique 

small G:Xx YA A; in other words, $ is a bijection of the object-classes of the two 

categories in 16. If g : G t F, then $-l(y) = h: H ---t K for h defined by 

Vds. t = ~s.t 6 E IGI (X3 Y)> t f FI W, YN 
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(here, G, F E Ana(Xx Y, A), H = I/-‘(G), K = tip1 (F)), and the mapping 9 H h is 

a bijection Nat (G, F)A Nat (I/~ ’ G, I,!- ’ F). This defines the isomorphism $ of 16. 

To show the isomorphism $ g i J cp, for a functor H: Y + Ana(X,A), and 

G = $(H), we exhibit an isomorphism M H : e 2 (Xx H) z G. Calculating e - (Xx H) in 

this case, we get 

lc’(XxH)I((X,Y),A)= j((X,Y),.s):s~lGl ((X,Y), A)). 

We can define the renaming transformation Cc : e 1 (Xx H); G by defining 

x[I(x,Y),Al:le-(XxH)l((X,Y),A)~ ICI ((X,Y),A) 

as 

((X, Y ), s) --f s. 

The corresponding natural isomorphism aN : e (Xx H)A G has 

(%)ILKY,.\,..% = LJ,,Y,. (10) 

We need to see that rH is natural in H E Fun(Y, Ana(X,A)). Because of (lo), naturality 

means that for H, K E Fun(Y, Ana(X,A)), j:H -+ K, k = p(j), P = y!-‘(j), 

SEIH(Y)(X, ~EIK(Y)IX, we have 

But this equality is true; both sides are equal to (j,)s,,. 

This completes the proof. 

We also arrive at the conclusion mentioned after 15: If K: Y -+ Ana(X,A) is an 

anafunctor, we have a functor H: Y + Ana(X,A) isomorphic to it; H is obtained from 

G = e J (X x K) as above. In particular, the anafunctor H(Y) :X + A has 

/H(Y)IX = ((a,.s):u~~KI Y, SEIK,(Y)IX}; 

the “uncertainty” from K is absorbed into the values of H. 
Here is a rather special, but useful, result. 

17. When the cutegory X kas$nitely many objects, the functor 

I ‘( ):Ana(Y, Fun(X,A)) + Ana(Y, Ana(X,A)) 

induced by the inclusion 1: Fun(X,A) -+ Ana(X,A) is an equivalence qf categories. 

Proof. Since 1 is full and faithful, it is immediate that so is 11’ ( ). To show that 10 ( ) is 
uniformly essentially surjective on objects, it suffices to show that the composite with 

the equivalence cp of (9) 

cp ‘(I I( )):Ana(Y, Fun(X,A)) -+ Ana(Xx Y,A), 



is so. Let G:Xx YL A. Define F:Y A Fun (X,A) as follows. Put IFI Y d;. 

n x t /XI IGI ((X3 Y )); f or UE IFI Y, F,(Y)(X) d~r G,,,,,(X, Y); for .x:X ---f X’, F,(Y) 

(s) d; G‘,,X.,.<,,X,, (x, Y) (note that u(X) E JGI ((X, Y)), a(X’) E ICI ((X’, Y))); for 

I’:Y -+ Y’, a E IFJ Y, a’ E IFI Y’, the components of the natural transformation 

F,,,.,(j‘): F, (Y) + F,,, (Y’) are defined as 

(F<,.,,, (.f))x ds G,o,.., ,x,(X>.r): G<,,x,(X, Y) + Giox, W, Y’). 

It is easy to check that F is an anafunctor; the only point where the finiteness of 1x1 is 

used is the inhabitedness of the set IF/ Y = n.y t,.Y, jGl ((X, Y)); as a finite product of 

inhabited sets, it is inhabited. 

We need to exhibit a natural isomorphism h:(cp “(I - ( )) (F)L G. But (y ‘(I ‘( )) 

(F)=e>(Xxl(F)) has 

le,-(Xxz(F))(((X,Y))= {((X,a),X):a~lFl I’) 

and 

(~-‘Wx~(F)h,, I,,. v,(X> Y) = F,,(Y)(X)(= Gt.,(X, Y)). 

Thus, we may define h by 

h I~x.ol,xL~3lxl = L,,,~ \,,. T. y,; 

7 ensures that h is well-defined. 

When in 16, we put X = 1, we note the isomorphism 1 x Y z Y, and we write A + for 

Ana (1,A) (we may call A ’ the category of small anao~jects of A), we obtain the 

isomorphism Ana(Y,A) z Fun(Y.A +) of categories. In other words, (small) anafun- 

ctors Y --+ A may be identified with ordinary functors from the same domain Y into 

the category A + of (small) anaobjects of the codomain A, and this identification 

extends to natural transformations. This shows that the notion of anafunctor and that 

of natural transformation of anafunctors can be reduced to the case when the domain 

category is 1. This fact was suggested by the referee. 

When in 14, we put both X and Y equal to 1, we obtain the equivalence A + + N A +. 

In fact, writing /la :A + ‘- ?+ A + for a (the) quasi-inverse of the equivalence 

q:A+ ?,A++ given in 14, and II,, : A + A ’ for the inclusion functor A z Fun 

(l,A) --f Ana(l,A), we have an idempotent monad (( )‘, p, ?I) on the bicategory 

AnaCat (both “idempotent” and “monad” understood in the suitable bicategorical 

sense); this fact will be explored in 1151. Further, in [15], it will be shown that A+ is 

a stuck-completion of A; the full explanation of this fact requires putting anafunctors 

into the context of indexed category theory. 

As I mentioned in the Introduction, the construction of the category A+ is also 

given in [lo], where A+ is named the category of cliyues of A; see [lo, Chapter 1, 

Section 11. The general properties of cliques and A+ are not developed in [lo]; A’ is 

used in [lo] for purposes different from those of this paper. 

Written out explicitly, A+ is the following category. An object A of A+ (a clique, or 

a small anaobject ofA) is given by an inhabited set IAI, an IAl-indexed family (A,y),,E IAI 
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of objects FI,~ of A, and an assignment of an isomorphism A,, t : AsA A, to each pair 

(s, t) of elements of S such that A,, ,s = 1,4$ and A,., 1 A,,, = A,., whenever s, t, u E S. 

A morphism h: A + A’ is a family 

such that 

A, h, A,, 

h, ,’ 
> 4 

for all appropriate values of the parameters. 

By a (not necessarily small) anaobject of A, we mean a (not necessarily small) 

anafunctor 1 4 A; we will use (in Section 3) a similar notation in relation to 

anaobjects in general as we did above for small anaobjects; for a general anaobject A, 

IAl may be proper class. 

2. Adjoint anafunctors 

Anafunctors provide solutions without introducing non-canonical choices to exist- 

ence problems when data are given by universal properties. The best example for this 

is the existence of an adjoint anafunctor when the “local existence criterion” is 

satisfied. 

Given the anafunctorsx 2 A, we say that F is a I@-adjoint to G (F+ G) if we have, 

for any X E X, A E A. s E IF 1 X, L‘ E ICI A a bijection cp S,,., mapping ,f to y as in 

F,X& A 

(1) 
X,, G,.A 

between A (F,5 X, A) and X(X, G,. A), which is natural in X and A in the expected sense: 

for any Y E X, t E IF I Y and h: X + Y in addition to the above data, in 

F,X 
F\,h 

>F,Y/‘A 

we have qs,,.(,f‘~x F,, k) = q,,,.(f) k, and similarly for data in A. 
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We leave it to the reader to check that this is the same as the standard internal 

definition in the metabicategory ANACAT: the existence of ‘I: 1, + GF and 

E: FG + 1, such that 

where the a’s are the appropriate associativity isomorphisms. In particular, if F-[G, 

and F’ c F, G’ E G, then F’-J G’; and if F-l G, F’-1 G, then F’ z F. 

Let X -CA be an anafunctor (in particular, G may be an ordinary functor), and 

X E X. We say that the triple (B E A, u E IG 1 B, q : X + G,B) is good for X if it has the 

universal property that for any (A EA, c E ICI A, g:X + G,A) there is a unique 

f: B --f A with g = G,,,(f) ‘- ‘I. X -GA satisfies the condition of local existence qf a left 

adjoint if for every X EX, there is at least one good triple for X. 

1. Assume that the anafunctor X ‘GA satisfies the condition of local existence of a kft 
aGjoint. Then there is a (canonical) anafunctor F :X + A which is left &joint to G. 

Proof. We define F :X -+ A as follows. For any X EX, IFI X is the class of all good 

triples for X. Ifs = (B, u, 11) E IFI X, F,(X) d;= B. If also t = (C,o,fI) E IFI Y, g:X -+ Y, 

then F,,,(g) is the unique f: B --f C such that 

g 0 

i I G,,,(f) 

The bijection $S,, (see (1)) is as follows. If s = (B, u, q) E (FIX and v E IGI A, for 

f: F,7 X + A, the corresponding g : X --f G,. A is g = G,,.(f) 0 7. The remaining details 

are similar to the ones in the basic theory of adjoint functors (see [ll]). 

When G is a functor, F constructed above is a saturated anafunctor. Indeed, given 

s = (B, B, ye) E IFI X and p: BL C, the condition for t = (C, C, 0) E IFI X to satisfy 

F,, t(lx) = p is that the diagram 

commutes, which determines 0. 

Let us also note that if X, A, G are all small, then so is F. 
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The example in 1.2 is, of course, a special case of 1, which is the main source of 

naturally occurring anafunctors. 

Another special case of 1 says that any functor, or even anafunctor, which is fully 

faithful and essentially surjective has a quasi-inverse anufinctor; thus it is an equiva- 

lence (without the axiom of choice) in the sense of the metabicategory ANACAT. We 

call an anafunctor which is an equivalence in the sense of ANACAT an anaequiualence 

of categories. F :XA A is ,fully faithful if for every X EX and Y EX, for some 

(equivalently, for all) s E IF ( X, t E (FI Y, the mapping F,, I :X(X, Y) + A(Fs X, F, Y) is 

a bijection. The same F is essentially surjectke if for all A E A, there is X EX and 

s E IF / X such that A z F,X. We have 

2. Any fully faitkful and essentially surjectice (ana)functor is un anaequicalence of 

categories. 

By 1.11” we have the following: 

2’. The inclusion A + A+ ( = Ana (1, A)) is an anaequivalence. 

Completeness properties of functor-categories depend, in the usual treatment, on 

non-canonical choices. Assume I, X and A are categories, and A has Z-indexed limits. 

Then the proof that the functor category Fun(X,A) has Z-indexed limits proceeds by 

picking particular limits in A of the Z-indexed diagrams in A obtained by evaluating 

the given Z-indexed diagram in Fun(X,A). 

For the case when the category Z has finitely many objects, we can avoid the choices. 

In fact, in this case the metacategory ANA(X, A) of anafunctors is better than the base 

category A; it has specified limits (given as a function with arguments the Z-diagrams in 

A) even if A is not assumed to have specified limits. We will have results concerning 

arbitrary small limit types Z see propositions 6 and 7 below, and also the last section 

of the paper. 

3. Suppose that the small category Z has Jinitell; manJ objects, and the category A has 

I-inde.ued limits. Then ANA(X, A) has specified Z-indexed limits. 

Proof. For simplicity of notation, we show why ANA(X,A) has specified binary 

products if ;i has binary products; the general case is only notationally different (but 

also see 4 below). Given F, G E ANA(X,A), we define F x G E ANA(X,A) as follows. 

We put 

IFxGIX = {(sEIFIX,~EIGIX,F~X LA5 G,X):(qn’) is a product in A). 

For a E IF x GI X as displayed, (F x G), X = A. If also a’ E IF x GI X’ with similar 

ingredients, andf: X + X’, (F x G)a,a.(,f) is the arrow 9 in the following commutative 



YA\ K’ 

F,X G,x 

I leave it to the reader to define the projections F 2-F x CL G, and to check 

the universal property of the product. 

We have the following variant of 3. 

4. Suppose that X, A and I uw smdl ctrttyories, ad I ha.s,finitely many o&xts. Assume 

that A has I-indexed limits. Then Ana(X,A) has sprc$ied I-indexed limits. 

Proof. By 1, we have Lim :A’ (= Fun(l,A)) -+ A, an anafunctor right adjoint to 

d :A + A’. Since A is small, Lim is (can be taken to be) small; thus, the adjunction 

d -_t Lim lives in the bicategory AnaCat. As any bicategory, AnaCat has a representa- 

ble functor to ANACAT, represented by any object of it: 

Ana(X, - ) = AnaCat(X, - ): AnaCat ---f ANACAT 

(as explained before, we mean a homomorphism of bicategories when we talk about 

a functor of bicategories). As any functor of bicategories, Ana(X, - ) preserves any 

adjunction in its domain. Thus, we have the adjunction 

Lim* 

Ana(X, Fun(1, A)) 7 Ana(X,A), (2) 
+ 

A* 

where Lim*, d* are the jimtors Ana(X, Lim), Ana(X, d), resp. We have the equi- 

valences 

Ana(X, Fun(l,A)) = Ana(X, Ana(l,A)) 
A 

17 

E Ana(1, Ana(X,A)) Y Fun(1, Ana(X,A)). 

t t 
14 15 



hf. Makkni;.hurnal of‘ Purr and Applied Algebra IOH (1996) 109% I73 139 

Composing them with (2) we get 

Lim ^ 

Fun(Z, Ana(X.A)) 7 Ana(X, A). 
- 

A 

Going through the above equivalences, one can check that o^ is isomorphic to 

d : B --t B’ for B = Ana(X,A). Thus, up to isomorphism, Lim^ is the desired limit- 

functor. 

The conclusion of 4 holds, in particular, for A+ = Ana(l,A). 

Of course, the similar result for colimits is a consequence, by passing to the opposite 

category. But also for other finitary categorical operations defined by universal 

properties, we have similar conclusions, at least for A+. E.g., 

5. Suppose that the small cutegor_y A is Curtesiun closed. Then A+, the category cfsmall 

unaohjrcts ofA (a category anaequivalent to A; see 2’), is ulso Cartesian closed, und in 

.f;lct has .spec$ed jinite products und esponentiuls. 

Proof. An exponentiul diugrum on a pair (X, Y) of objects in A is a diagram of the form 

(3) 

such that (p, 4) is a product, and e satisfies the usual universal property of the 

evaluation morphism of an exponential (think of 

xxY.t-A Y 

j/ \;1 
X Y' 

the definition is that for any 
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such that (p’, q’) is a product, there is a unique commutative diagram of the form 

Z&Y 

r( 
x 

1, t 
x 

K 

P/ q 

: 

\ 
W 

t f 
W' 

P\ 4’ / 
i 

‘1 (4) 

Z’ 
e’ 

>Y 

Of course, a category with finite products is Cartesian closed iff there exists an 

exponential diagram on any pair of objects.) 

If d abbreviates (3), we indicate the components of A by putting the subscript A to 

the corresponding symbol in (3); e.g., W,, for the object W in (3) etc. 

Let A, B be anaobjects ofA. Define the anaobject BA as follows. Let (BAI be the set of 

all (s, U, A) such that s E IA 1, u E JBI , and A is an exponential diagram on (A,, B,). For 

II = (s, U, A) E IPI, let (BA), d; W,, . Here and below, a = (s, U, A) E (BAI and a’ = (s’, u’, 

A’) E (WI. (kP)& O, : w, + W,, is defined to be the arrow g in the unique commutative 

diagram 

h R (5) 

the reasons why the latter uniquely exists are the universal property of A’, and the fact 

that A,, SI, B,,, ,,. are isomorphisms. 

The exponential diagram 

on (A, B) is given as follows. IA x B” I d; IBA I; (A x E4), = 2,; (A x BA),, a, is the arrow 

h in (5). For tc IAl, TC,*~:Z -+ A,,, is A,,, p,,; rc’ is similar. For u E IBI, ea.ti: Z + B,. is 

B ..a~~eA. 
The verification of the needed properties of these data is omitted. 



6. Let X he a stmtl/ category, A a careyory haviny all mall /itxitS. The erer_v ma/l 

di~t~~tuttt in Ana(X. A) htrs a litnit in ANA(X, A); that is, with cp : Ana(X,A) + ANA(X, A) 

the itzt~lu,sion. ,fiw my snzull Z md r: Z + Ana(X,A), lim(cp Z) exists iu ANA(X,A). 

Moreowr, there is LI clu.wfinction ~t.~.~igt~i~~(-l, to crtzy stnall diugrm r in Ana(X.A), 

LI limit-cone itz ANA(X, A) ou q~ r. !f’A is Iou11ly sttzall. the limit-objects in rhr ctssigtzed 
limit-cones ur’e lowlly .stt~c~ll ~it7ctfitt~c~tor.s. 

Proof. Let f = ((F,),., (.fl: Fr ---t F,) ,,., _ .,, F ,) be a small diagram in Ana(X,A). 

We define L = lim Z E ANA(X,A) as follows. 

Fix X E X, to define 1~5 X. We let ZIX be the category whose objects are pairs (I, s) 

with I E Z and s E (Frl X, and whose arrows (I, s) + (J, t) are (s, t, i) with i: I --f J (that 

is, an arrow (I, s) + (J. t) is just an arrow I --f J, with the information on the domain 

(I, s) and the codomain (J, t) attached; we will write i : (I, s) + (J, t) instead of (s, t, i) : 

(1,s) --f (J, t)). By the hypotheses, Z(X is a small category. Consider the diagram 

Z/X: ZIX + A that assigns the object F,.., X = (F,),(X) to (Z,s), and the arrow 

I.s,, =(.fl),~.,:F,,,X -+ FJ.,Xtoi:(~,.4 f -+ (J. t). We define (LI X to be the class of all 

limit-cones on ZlX in A; for rt E IL( X, n = (rr,,,: [7r] -+ F,,,X) ,,,,, t,-,,V, we put 

MX) = [InI. 
Let 6~: X + Y be an arrow, rr E IL1 X. p E IL1 Y, to define 12 s L,,,,(g): 

L,(X) + L,,(X). h is given uniquely by the condition that 

commutes for all I E Z, s E (F1 X, t E IF\ Y. Indeed, first of all, the diagram 

shows that the arrow k,,,ds FI, ,~. I Q nI. c: L, X + FI., Y does not depend on s (the 

upper commutativity is by n being a cone. the lower by the functoriality of F,; the 
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equalityf, ,,,,..,, = (lfi,).s,sz = F,, ,,(lx) holds by the compatibility of the diagram r, and 

the definition of lF,). Next, the diagram 

f ’ 6. 1’ y 

I I / 

shows that (kr,l)(,,,,Eo,,,,,Y) is cone on the diagram rlY. Since 

<PI. l: L, Y -+ FI,, Y >I, t is a limit cone, there is a unique h: L, X + L, Y such that 

h 1~ p ,, L = kl, I for all I and f, which is our assertion on h. 

Having defined L,,,(g), I leave it to the reader to check that L so defined is indeed 

an anafunctor. We have 2, : L + F, for which i,,n,, = z,, s, for all appropriate values 

of the parameters; moreover, (LI), is a limit cone on the diagram cp 7 r; the verifica- 

tion is omitted. 

Note that, in the proof, in order to build the required I-type limit, we use a whole 

class of other limit-types, to construct limits in A. However, when each F1 is in 

particular a functor, than each Z/X is isomorphic to I; this shows that we have 

7. Assuming that A has I-type limits, then I-tJ,pe diagrams of jiwctors X -+ A have 

specijed limits in ANA(X, A). 

The last observation is due to the referee. 

3. Anabicategories 

In a two-dimensional category, for a given pair of objects (O-cells), the totality of 

arrows (l-cells) from one to the other form a category; in short, arrows are objects in 

categories, and thus, one should attempt to determine them only up to isomorphism. This 

means that, for a given triple of O-cells A, B, C composition of arrows A -+ B with 

arrows B + C, instead of being a functor as it is in a bicategory, should be an 

anafunctor, preferably a saturated one. 

The definition of anahicategorJ is obtained from that of bicategory by natural 

modifications, amounting to replacing functors by anafunctors in all places. There is 

a good abstract way of saying this: an anabicategory is ANACAT-enriched bicategory. 

I will not attempt to make this completely explicit, although I believe this is the right 
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way of looking at the concept. From the description that follows, the reader may get 

a reasonably good idea of the notion of an Y ‘-enriched hicutegory, for any Cartesian 

(in fact, for any monoidal) bicategory 3 I. The point is that the more generul notion 

(! ‘-enriched bicategory) is easier to grasp than the more concrete one (ANACAT- 

enriched bicategory), because there are fewer elements of the abstract situation 

available for manipulation than there are in the concrete one. This was already fondly 

pointed out by me in [12] in the context of the notion of 2-category. 

An anrrhicategory .d has data 1 (i)-(vi), satisfying conditions (vii) and (viii): 

1. (i) Objects (O-cells). 

(ii) For any pair of objects A, B a category ,d (A, B), or simply [A, B], of arrows 
./ 

(l-cells) A --f B (the objects of [A, B]), and 2-c&s as c( in A 1 ~1’ B (the arrows of 

the category [A, I?]). B ’ 

(iii) For any object A, an identity anaobject of [A, A] (an anafunctor lA: 1 + [A, 

Al). 
(iv) For any objects A, B, C, an anafunctor 

a.~,c:CA.BlxlB.Cl --f C&Cl 

(composition). 

(v) i,,B: lB ,( )a l,a,B1 and P~.~:( ) l,,,A 1 [A,RI (kft and right identit? 

isoll~orphisms); here, lB ‘( ) is an abbreviated notation for the composite (in 

ANACAT) of 

[A,B]A [A.B] x l= [A,B] x [B,B]z [A,B]; 

the natural transformations i = i,. B, p = pa. B have components 

i 0.i: l8.j ‘af5 .A Ph:r:f‘hlA,iL f 

(.f: A -+ 6 iE ll.d,,jE llBL ‘1E Ir2a.B.sl(f, la,j)3 he I JA.A,BIUA.iJ'))~ 

(vi) For any objects A, B, C, D the ussociaticity isomorphism, a 2-cell c(~, B, c, D between 

composite arrows as shown in 

[4~lx[~,~l l [ADI I n i) 

The natural transformation x = c(~. B. (., D has components 

x a.h.c.d:h ,&~rr.f‘)~ (h ,,~).nf 

(.f: A + B, (J:B + c, h1C-R aEI,a,B,cIUig)7 ~~l-A.c.DI(~:,f,h), 
c.61 B.C.DI (.cl>h),dEl )A.B.DI (.fih,-,.gN. 



Remark. To simplify notation. here and below we ignore the canonical equivalences 

and isomorphisms that are part of the Cartesian bicategorical structure of ANACAT. 

Thus, when we want to state the notation of”Y ‘-enriched bicategory”, there is another 

object in the diagram, and the left-hand side looks like 

with p^ the appropriate canonical equivalence in .p/. In ANACAT, t is in fact an 

isomorphism. 

(vii) (Associutitiit~~ cohewncr). Let A, B. C, D and E be objects. With a logic that 

should be easy to guess, we make the following abbreviations: 

0 =[A,B]x[B,C]x[C,D]x[D,E] 

1 =[A,C]x[C,D]x[D,E] 

2 =[A,B]x[B,D]x[D,E] 

3 =[A,B]x[B,C]x[C.E] 

12 = [A, D] x [D, E] 

13 = [A, C] x [C, El 

23 = [A,B] x [B,E] 

123 = [A,E] 

(61) = ,,,D.CX [C,D] x [D.E] :o + I 

(0,2) = [A,B] x L1.(..DxcD>q :o * 2 

(0.3) = [A,B]x[B,C]x ‘(.,D.F: :(I + 3 

(1,12) = .4.(..Dx[D,E] : 1 + 12 

(1,13) = [A,C] ‘c.D.E :I + 13 

(2,12) =‘-.;4,B,I)~[D,E] :2 + 12 

(2,23) = [A,B]x B.D,E :2 --) 23 

(3,13) = A.B,C~[C,E] :3 + 13 

(3,23) = [A,B] x J~,<-,~.’ :3 ---t 23 

(12, 123) = ‘A.,).E : 12 --f 123 
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(13,123) = A.C.E : 13 -+ 123 

(23,123) = A.B,E :23 4 123 

We have the cube 

, / ‘i 
> 

, ,3 /I23 I 
F 23 

with the edges the anafunctors indicated. Each face of the cube has a 2-cell in it as 

follows: 

The front face: 

(13)=id :(1,13)(0,1) -, (3,13)(0,3) 

(both composites are canonically isomorphic to “A. B. c x (-, D, E; taking the products in 

ANACAT as in CAT, the isomorphism is the identity); 

The back face: 

(13)2 = xA.B. n. E : (12,123) (2,12) + (23,123) <2,23); 

The bottom face: 

(23) = [A, Fl x ~(a, c. D, E : (2323) (0,2) -+ (3323) <0,3); 

The top face: 

(23)l =x~.~,~,~ :(12,123)(1,12) + (13,123)(1,13); 

The left face: 

(12) = x,4, B. c, n x CD,EI : (1312) (O,l> -+ (X12> (0,2); 

The right face: 

(12)3 = CX~,~,~‘,~ :(13,123)(3,13) -+ (23,123)(3,23). 

With triple composites meant as associated to the left, there are six composite 

anafunctors from 0 to 123: 

(123) =(12,123)(1,12)(0,1), 

(132) = (13,123)(1,13)(0,1), 

(213) = (12,123) (2,12) (0,2), 

(231) = (23,123) (2,23) (0,2), 

<312) = (13,123) (3,13) (0,3), 

(321) = (23,123) (3,23) (0,3); 



and six composite natural transformations between the latter, which (after ignoring 

canonical isomorphisms in ANACAT) are as follows: 

i23 =(12) ~(12,123) :(123) ---f (213), 

123 =(O,l)-(23)1 :(123) + (132), 

2i3 = (0,2) -(13)2 : (213) + (231), 

231 = (23,123) ~~(23) : (231) 4 (321), 

i32 = (13,123),(13) :(132) + (312), 

3i2 = (0,3) (12)3 :(312) + (321). 

We obtain the following diagram of natural transformations: 

(132) __j (312) 
132 

The associativityycoherence condition is that the last diagram be commutative, for 

any choice of A, B, C, D and E. This is essentially a pentagon since i32 is (can be taken 

to be) the identity; the above way of presenting it is more symmetric. 

When we present the last diagram componentwise, we take a 4-tuple (f: A --f B. 

CJ: B -+ C, h: C + D, i: D + E) of arrows, and compute their (five) composites with 

all possible bracketings. Since there are twelve distinct compositions to be performed 

(corresponding to the twelve edges of the cube), we will use twelve arbitrary specifica- 

tions for ten composition anafunctors (ten because any one of them is determined by 

selecting three out of the five given objects); two of them are used twice (see the 

formulas above for the composites 0 + 123).The condition becomes the coherence 

pentagon (( 1.1) (A.C.) in [ 11, p.6), with the twelve arbitrary specifications appropriate- 

ly added; explicitly 



with the numbers 1 to 12 standing for appropriate, but otherwise arbitrary, specifica- 

tions. 

(viii) (Identity coherer~e) Consider 

[A, Bl x[B, B 1 x LB, Cl 

(1,-C 1)x LB, Cl I T =FG= [A,B]x'l,'x[B,C]H= [A,B]x(l,~()) 
i 

[A, Bl x[B, Cl 

[A, Cl 

and 

The condition is the commutativity 

In components, this becomes 

(.f: A -+ B, y : B + C, etc.). 

A one-object bicategory is a monoidal category; its objects are the l-cells of the 

bicategory, arrows the 2-cells, tensor-product is composition of l-cells, the (two-sided) 

unit I is the identity 1 -cell l*. A one-object anabicategory is an mamonoidal categoric. 



An anamonoidal category is a category A, with, among others, a unit anaobject I = I, 

ofA (that is, an anafunctor I: 1 + A) and a tensor-product anafunctor @A x A + A; 

for objects A, B, we have tensors A 0, B, for any specification a E 10 1 (A, B). (Note 

the changed order in A 0, B of the arguments with respect to the notation of 

composites.) To say that @ is saturated is to say that whenever ,LL: A 0, B--+ C, 

there is a unique h E I@ 1 (A, B) such that C = A O,, B and p: 1, @a,h 1,; if so, and if 

I is saturated too, we say that A is a saturated anamonoidal category. 

2. Example. Let R be a commutative ring (with 1); ModR the category of R-modules. 

ModR is a saturated anamonoidal category, with the following canonical 

structure. I @ I(A,B) is the set of all entities a = (C, y :(A,@ + C) where 

q is a universal (R-)bilinear map from (A,B): for any bilinear (p:(A,B) + D, there is 

unique f: C + D such that cp = f q?; we put A 0, B = C. Given also 

h=(F,U:(D,E) + F)EI@J(D,E), and ,f:A + D, g:B -+ E, f@,,h g:AO,B -+ 
D @,, E is the unqiue arrow h: C + F for which 0 =,f~ q. The unit anaobject is the 

saturation rRl# : 1 + ModR of ‘Rl: 1 + ModR picking out R as a module over 

itself. I leave the definition of the identity and associativity isomorphisms to the 

reader. This is the usual definition of ModK as a monoidal category, except for the 

absence of a non-canonical choice of the tensors, and a somewhat artificial-looking 

way of dealing with the unit object. (We could leave the unit object as it usually is, 

given by ‘R1: 1 + ModR (as an anafunctor), but then ModR is not saturated; we will 

see the advantages of saturation for anamonoidal categories when we discuss mor- 

phisms between them.) The usual verification of the monoidal properties works with 

no essential change to show that we indeed have an anamonoidal category. It is in fact 

saturated; the part of this fact that concerns the tensor-operation is essentially 

equivalent to saying that the universal bilinear map is unique up to a unique 

isomorphism. 

3. Example. Given a category X with (not necessarily specified) pullbacks, we have 

the anabicategory Span(X) of spar7.s in X, defined as follows. The objects are the 

objects ofX, an arrowf’: X + Y in Span(X) is a pairf= (X A @L Y) of arrows 

in X; with alsof’=(X k@‘A Y) :X + Y, a 2-cell q:,f + f’ is an arrow in 

rp : CD --f @’ with ,f,’ cp =f; . ,f; j = ,f;; composition of 2-cells is composition in X. With 

fas above, and y = (Y .(ilr% Z): Y + 2, we define IeX,Y,Zl (f;g) as the set of 

pullback diagrams 
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denoting (I) by a, we define g ‘,,fto be (X * Y % 2) : X -+ Z. Given, in addition 

todataasabove,alsog’=(Y ArtA Z) :Y --f Z,a’E/,~X,u,zl(fl,g’),Y:g ---f g’, 

cp ia ui 7 : g ,,,f + g’ in,f‘) is defined by the arrow $ : Y -+ Y’ we can put in the diagram 

by the universal property of the lower pullback. The identity 1, : X + X is given by 

the span (X AX-!+ X) (the identity anaobject of Span (X) (X,X) is now an 

ordinary object). The identity and associativity isomorphisms for the composition are 

given by canonical isomorphisms of pullbacks; the picture 

(2) 

contains the construction of the associativity isomorphism 

in (2) each of the items 3, 5, 6 and 7 is obtained by taking a pullback. The rest of the 

definition and the verification that all this gives an anabicategory are left to the reader. 

In fact, the definition is the usual one ((2.6) in [ 11) for the bicategory of spans, with the 

non-canonical choices removed. The composition functors are saturated in this 

example. 

A morphism of anabicategories will be called an anafunct~r (ofanahicutegories); this 

is the natural counterpart of “homomorphism of bicategories” (see Cl]), or functor of 

bicategories as we called it above. With F and .d anabicategories, an anafunctor 

F : :T + .d is given by data 4(i))(iv), satisfying 4 (v) and (vi), all given below. Again, we 

actually have a more general notion, that of an anafunctor of Ylenriched bicategories. 
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4. (i) A class IFI, with maps CJ: IFI + 1x1 (“source”), T: IFI + IA I (“target”). IFI is the 

class of spec$icurions; x E IFI “specifies the value s(x) at the argument o(x)“. For 

X EX, we write IFI X for the class (.x E JFI :0(.x) = X}, and F,(X) for z(x); the notation 

F,(X) presumes that .YE IFI X. As before, we write IFI(X,A) for {XE IFI X: 

F*(X) = AS. 

I note that it would be natural to make IFI (X, A) into a category; indeed, saturution 
for F will mean an additional structure, with IF I (X, A) made the object-class of 

a groupoid; I will not pursue this in this paper, but see [13]). 

(ii) For any x E IF/X, YE JFI Y, an anafunctor F,,,:!l(X, Y) -+ sZ(F,X,F, Y). 
(iii) (Composition i.sornorphi,snz) For x and _V as before, and z E lF( Z, an isomor- 

phism natural transformation F,, ,.. ; as in 

X(X,Y)xX(Y,Z) 
.i i / 

% ?T(X,Z) 

The components of F,, )‘, z are 2-cells of the form 

F,l\;,.,,r.,,.,,.i,: (F,~,,4 ~~(F,,,,,J’~~+ F,.;.,,(g .f’). (3) 

(iv) (Identity isomorphism) For any X E .f and .y E IFI X, an isomorphism F, as in 

thecomponents of F,are ofthe form F,,.,,,:l,,~.,~ F.,.,:,(lx.i). 
(v) (Composition coherence) We arrive at the coherence condition for the transition 

isomorphisms F,,,.,, without explicit use of further specifications by drawing diagrams 

of anafunctors and natural transformations in the style of 1 (vii). Assume 

and 

~EIFIX,~EIFIY,ZEIFIZ,\~‘EIFIW. 

Let us abbreviate: 

2 = F,X, Y = F, Y, z=F,Z, I@ = F,, W, 

1 =.K(X,Y), 2 = %(Y,Z), 3 = Z(Z, W), 



M. MakkuilJournal of Pure and Applied Algebra 108 (1996) 109-l 73 151 

4 = .‘x’(X,Z), 5 =.r(Y,W), 6 = :x’(X, W), 

_ - 
T = d/(X, Y), z = d(Y,Z), 3=d((z,W), 

4 = .d(X,Z), 5 = d(9, W), 6 = .d(X, vv) 

and consider 

with edges 

(1) = F,,y~Fr,;~F,,,~ :l x2x3 + ixzx3, 

(2) = :I’(X, Y) x y.z,w :1x2x3 + 1x5, 

- - 
<3) = .d(X,Y)x y,;I,pv :TxZxS + 1x5, 

(4)=F,,,xF,,,, :1x5 -+ixs, 

(S)= ‘x.y,zXZ(Z,W) :1x2x3 +4x3, 

(6) = .u,,-,zxcd(Z,W) :TxZx3 + 4x3, 

(7) = F,. z x Fz, ,,a : 4 x 3 -+ 4 x 5, 

(8) = x.z.W :4x3 -+ 6, 

(9) = ‘x, y, W : 1 x 5 + 6, 

(10) =‘I,y,)I,b*. :Tx5 -+ a, 

(11) = Fx,w :6 + 6, 

(12) = “y,z,,p :4x3 + 6. 
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The front and left faces are themselves composites as follows: 

ix2x3 
(3) 

>ix5 ix 2x3 
(6) 

>4x5 

I_ 
(1.2) (4.2) 

t_ T (1.4) (7.2) T 
1x2~3 

(13) 
,1x5 1X2X7 

(14) 
,4x3 

T (1.1) (4.1) ,T T (1.3) (7.1) 

1x2~3 1x5 1x2~3 
,T 

4x3 
(2) (5) 

where the arrows are the ones obtained by the above pattern. The faces of the cube 

each have an isomorphism 2-cell in them as follows: 

The lower front face: 

X(X, Y)xF,,.,, : (13) (1.1) -+ (4.1) (2); 

The upper front face: 

id : F,,, x 3u.z,w + F,,, x -y.i: w; 

The (complete) front face: 

Cl1 = (Fx, y x qv.z,w)W(X, 1’) x F,, z. ,,a) : (3) (1) -+ (4) (2); 

The back face: 

PI = Fx, z, w :(15)(10) + (14)(11); 

The bottom face: 

c31 = Hx, Y.Z. w :(11><8) + (12)(2X 

The top face: 

C41 = ~x,r,z,w : (15) (9) + (13) (6); 

The lower left face: 

id : ox. y,z x F,, ,+, + ix. Y.~ x F,, ,G 

The upper left face: 

F x,p,z x sZ(~, m) : (6) (1.4) + (7.2) (14); 

The (complete) left face: 

C51 = (Fx, .“, z x~(z,~))(~,,,,,xF,,,) :(6)(l) + (7)(5); 

The right face: 

C61 =Fx,y,w :(10)(4) + (f1>(9). 
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We have six composite arrows from 1 x 2 x 3 to 6 in the cube, and six 2-cells 

between them; the commutativity of the resulting hexagon is the requirement: 

The componentwise form of the condition can be obtained by chasing an arbitrary 

element (f, y, h) E 1 x 2 x 3 around. It can also be obtained directly from the corres- 

ponding condition for bicategories (see (4.1) (M.l) in Cl]), by putting in further indices 

in a meaningful way. Starting with X JL YAZh’ w, XEIF(X, L’EIF(Y, 

ZE~F~Z,WE~F~ W,andi, . . . , ‘i and 1, . . , 10 from appropriate specification-sets, we 

use the abbreviations 

p,= F,,:i(fL PC? = Fr,;,z(d, Fh = F;,*:,@), 

FkI '2f) = ~LL5k1°2.f)~ F(h "6 d = &,,:5@ 36 91, 

F(h ~9(9'i2f‘N = ~,,M:6w9ka2f))~ 

F((h'6d0,0f)) = F,,.:~((h'6g)010f)), 

F I, 2 = Fy,I.,z:r,z,~,l,2, Fs.6 = FJ,:,.:2,z.5:5,6 3 

F49 = Fr,:.n:ui.i~~.9~ F 8, 10 = F~,~,k4:i,5,5.8.10, 

Fa 2,9,6, 10 = F~.~6,t(%,9,6. 10). 

The following diagram has to be commutative: 

(vi) (Identity coherence) We give the componentwise form of the condition 
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only. For f: X + Y in .(r’, .\: E IFI X, y E IFI Y, and appropriate specifications 1,2,3, 1, 

2, 3, i, j, 

6 i ,zF,,:(f) 
F,:,.,i(~.,‘,i)“iF,.,,i(.f) ‘ 

I F x /.I iii I: 0 

and a similar commutativity involving the p’s 

From now on, we assume that the anabicategory ,d has saturated identity functors 

lA : 1 -+ [A, A] (1 (iii)), and saturated composition functors 3A, B, c: [A, B] x [B, C] + 

[A, C] (1 iv)); in this case, let us call .d saturated. For .d saturated, there is a useful 

reformulation of the notion of anafunctor A + &‘, trading in the associativity 

isomorphisms for certain operations on specifications. 

Let F : T + .d be an anafunctor of anabicategories. For simplicity, assume that the 

sets IFI X are singletons. With the notation of 4 (iii), in the context of (3) there, with the 

subscripts x, J, z dropped, the saturation of the composition functor 

“= -,.,..:d(FX,FY)-~.d(FY,FZ) + .d(FX,FZ), (4) 

gives a uniquely determined 5 E 1 / such that (F, y)~~,(F,,f) = F,(g ~,f) and 

f,:,q~~i,.irlfi,f = Fq.,.i,:(i,h. (5) 

Here, a depends on (f; 9 and) s, t, u, LI and h; however, the dependence on h is illusory. 

Consider the following commutative diagrams: 
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(the first is the functoriality of (4). the second is the naturality of Fx. y. z of 4 (iii)). 

Together they show that if 6 is suitable for h, then it is suitable for h’, with the other 

data being the same. Thus, we have ~7 as a function of s, t, u and U: 

4. (iii*) (Actiorz on specijications) 

a = F (s, t, u; a) (s E lFl.L t E IFI 8, u E I o I N.f; SIX 

uEIFl(.9-of‘);C1EI’~I((F.~.~FtY))) 

such that 

F,,(c/ ..f) = F&I) ‘C F.<(f‘) 

and 

F,. u’ (*; ‘la. u, cp 1 = (FL c,(v)) ‘,.,‘(FS, s,(v)) 

(q:,f +,f’,“$:g + g’,Z= F(s’, t’, u’; a’); the last equality corresponds to the naturality 

of F x, y. z of 4 (iii)). 

Next, we realize that in this context composition coherence (4 (v)) has as a conse- 

quence the identity 

4 . (v*) (Action on n.ssociafiuity isomorphi.snzS) 

F,,,(a rr.h.c.r,) = %6.i.d; 

here reference is made to the data 

Fzg 
FY 3 

z 

1 h 

FW 

FZ 

1 

FAJh 

FW 
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and ii = F(l, 2, 3; u), 6= F(3, 4, 6; h), C = F(2, 4, 5; c), 6= F(l, 5, 7; d). 

The identity isomorphisms (4 (iv)) can similarly be traded in for specifications. Let 

A E .d. The saturation of 1, means that whenever p: l,,, in rP, there is a unique 

j~(l,( such that C = l,,j and /L = l,.,, i,j. The identity isomorphism of 4 (iv) has 

components 

Fx,~:,,,: lFX. j ~ F,(l,,i). 

Given the data in the last display, by the saturation of l,, there is unique isuch that 

l,,~; = F,(l,,i) and 

1 FX.j.i = Fx,~:,.,. (5') 

Again, ihere does not depend onj; r = F (u; i). Thus, the data 4 (iv) can be replaced by 

4. (iv*) i = F(u; i) (i E /‘1x11, u E IFI (1,. i)) 

such that 

(i = F(u; i), i’ = F(u'; i’)). 

Then 4 (vi) becomes 

4. (vi*) F,.ti(&,i)=&.; (.f:X 4 Y, ~-,,i:1~,i~~,,f’~f, s~IFl.f, r~lFY.rl(l~,i), 
u E JFI (1 y. i on f); a = F (s, t, u; a), the latter from 4 (iii*), and i = F (t; i)), and similarly 

for p. 

Conversely, even without assuming that .G3 is saturated, in the definition of an 

anafunctor F : C!C + ,Ce with all IF] X singletons, we can dispense with the composition 

isomorphisms 4 (iii) and the identity isomorphisms 4 (iv), and instead, use the data 

4 (iii*), 4 (iv*), satisfying 4 (v*) and 4 (vi*). Indeed, if F is given by 4 (i), (ii), (ii*), (iv*), 

(v*) and (vi*), there is a unique anafunctor F : Y%’ --) .d in the original sense that is 

related to the F we start with as just described; we use (5) and (5’) as the definition of 

composition isomorphisms and identity isomorphisms, respectively. The essential 

point is that 4 (v) and 4 (vi) and will hold. 

An anamonoidal jiinctor is, by definition, an anafunctor between anabicategories 

with one object, with the one specification set for the object-function being a singleton. 

Explicitly, with X and A anamonoidal categories, A saturated, an anamonoidal 

functor F :X + A is given by an anafunctor F :X + A of the ordinary categories 

X and A, a mapping assigning to each s E IFI X, t E IFI Y, u E I@ I (X, Y), u E IFI 
(A 0, B) a specification a = F (s, t, u; u) E I @ 1 (F,X, F, Y) such that 

F,,,,,(fO,,.,g) =(F.,,,,f)O,,,(F,,,,g) (.f‘:x -+ X’, 9: Y + Y’, etc.), 
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and a mapping assigning to each i E II,\, u E (FI (I,,,), a specification I = F (u; i) such 

that 

and such that the conditions 4 (v*), 4 (vi*) hold. 

In case F is a functor (each IFI X is a singleton), ii becomes a function of u alone, 

thus F is given with a function also denoted F: 10 ( (X, Y) --f ( 0 I (FX, FY) and 

another function F: \I,1 -+ II, I such that 

F(X 0, Y) = (FX) @,,(FY), 

F(fC3,, us 9) = WI OFa, Fus (Fg) (f: X --+ X’, g : Y + Y’, etc.), 

Oxa, b. c. d) = %~a, Fb, FC. Fd > 

F(Jw, i) = AFa, Fi> F(pa.i) = PFn, Fi (2,, i : I,, 0, A 2 A, etc.). 

We may call such an F a monoidal functor between the anamonoidal categories; 

a monoidal functor is precisely a structure preserving map of anamonoidal categories. 

It is pointed out next that monoidal functors of anamonoidal categories correspond 

exactly to the (not necessarily strict) monoidal functors of monoidal categories in the 

usual sense [4]. 

First, given a monoidal category X is the usual sense, we can construct its 

suturation X#, a saturated anamonoidal category, as follows. The underlying category 

of X# is the same as that of X, the anaoperation @ # .XxX -+ X is the saturation of . 

the functor 0 :XxX --t X. This means that I @# I (X, Y) is the class of all entities 

~=(X,Y,/L:X@YAZ), with X@,Y=Z, and for f:X +X’, g:Y --f Y’, 

f@,,,, g = p’ ‘(f@ g) ~QAL’-~. Similarly, the unit anaobject of X# is the saturation of 

‘IT:1 +x. 

Now, given the monoidal categories X and A, we can form their saturations X#, A*, 

and we have a hijection 

Hom(X,A)A Hom(X#,A”), (5”) 

where the first Horn is the collection of all monoidal functors X --, A in the usual 

sense, the second all monoidal functors X# --t A” as defined above. This bijection is 

given as follows: to F :X + A corresponds F# :X# + A#, where for a as above, 

F#(a) = (FX, FY, F(p)~i,~,~:Fx@ FYA FZ), 

where ix, y : FX @ F Y --% F (X @ Y) is the canonical isomorphism given with F; the 

action of F# on identity specifications is defined similarly. The verification of the 

bijection (5”) is omitted (see also [14]). 



2. Example (continued). Let y,: R + S be a homomorphism of commutative rings. 

With ModR, Mod, understood as “the” usual monoidal categories, it is common 

knowledge that we have a monoidal functor 

F = ( )BRS:ModR -+ Mod,y; (6) 

this is because 

(*) (X OR S) Qs(Y OR S) is canonically isomorphic to (X OR Y) OR S (X, Y E Mod,). 

However, in (6) there are two places where non-canonical choices have been made: 

one is the definition of the monoidal categories, the other is the definition of the 

functor itself. Making the categories anamonoidal categories in the way explained 

before, and making the functor an anamonoidal functor, we avoid all non-canonical 

choices. 

Explicitly, F as an anafunctor F : ModR ---f Mod,s is given by IFI X d;f the class of 

all universal R-bilinear maps of the form (X,S) + Y; for s the last-displayed map, 

Fs(X) is Y as an S-module (in the usual sense); the action of F on morphisms is the 

straightforward one. The action 4 (iii*) on specifications is obtained by making the 

proof of (*) explicit. Given universal R-bilinear maps 

(X,S)L X7, (Y,$+ Y, (X, r+ z, (Z,S)~ z, 

We construct a canonicalfy defined S-bilinear map 

(X, Y)-ii, 27. 

briefly described as follows. The composite 

(X,S, Y,S) --$ (Z,S)L z 

(.‘c,U,4’,U) F-+ (U(.U,J’),U’1.) ++ 3(L1(.Y,_l’),U’C) 

(7) 

is R-linear in each variable. By the universal property of 1, this gives rise to the 

componentwise R-linear map 

(X, Y,S) -+ 2, 

and that of 2 then gives (7) canonically; we can then show that (7) has the required 

universal property. This is the description of the action 4 (iii*) of F on specifications. 

The rest of the data and conditions are left to the reader to provide. 

3. Example (continued). Let F :X + A be a pullback-preserving functor between 

categories with pullbacks. F gives rise to an anafunctor p: Span(X) --f Span(A) of 

anabicategories. The action of p on objects is that of F; the action on arrows of p is 

induced by that of F; now, all specification-sets /El X are singletons, IPI X = {X}, and 

the effect of F on arrows, Fx, y: Span (X)(X, Y) --t Span(A) (FX, FY), is an ordinary 

functor, for each X, Y EX. The identity isomorphisms are identities. Instead of the 

composition isomorphisms, we give the action 4 (iii*) of P on specifications; remember 
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there are no s, t, u now. Indeed, this is nothing but the action of F again; ~1 E ( ( (J y) is 

a pullback square, U is its F-image: 

Z FX 

It is immediate that we have 4 (v*): the diagram (2) is mapped into a similar diagram 

by F. 

A tran,~i~~mlcltion h : F + G, of anafunctors 3” $ ,d of anabicategories, is given by 

data 5 (i). (ii) and condition 5 (iii), (iv). 

5. (i) For X E 3, x E IF( X. x’ E IGI X, an anaobject h,. xI of the horn-category d(F, X, 
G,, X), II,,,, : 1 -L .d (F, X, G,. X). h,, II has components h,, xi. m : F, X + G,, X 

(112 E VL, .,I). 
(ii) For the data in (i) and Y E .T, ~3 E IFI Y, 1” E (GI Y, a natural transformation 

11,. I., l’. s, as in 

3(/Y, Y) X G,,Y) 

Here, 11~. ?, ( ) abbreviates the composite of 

.d(F,X, F, Y) z 1 x .ol(F,X, F, Y )A d(F, Y, G?,, Y) x .d(F, X, F, Y) 

-+ .d(F,X, G,, Y) 

kc x’. Y. p’ has components 

II I. \‘. I’. I’ : \. \ : ct. h. I,,. ,I : 

ht.,..,, ‘a F,,,.:\(f) -+ G,,.,,:,,(,f) ,+h,,,~:,,,. 
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The conditions that follow will be given in their componentwise forms only. 

(iii) With reference to 

XL y9‘ .&XL y, 

Ff= Fx,,,:.\(f)> Fg = F,,;.,(cY), & ‘>lf) = L,,k7 ~I.0 

@= G.x:,.v(f)> Gg = G,.,,:, (91, c(g c,~.f) = Gx:,:&o,f)> 

F 1.4 = ~,,,.,;:.s,,,.;~,z,, GI, 6 = G,,,,.,,;,:.,,.,,,.,.,,6, 

hx = h,.~:,, b = h?.,,,,,,, b = h,~;,.,,, 

h -h 2, 3 - \-,K’,z..-‘.u,u’:2.3,m.p~ h - h 8. 12 - ~.~‘.r,~‘,r.c’.X.l2:n,p~ 

h 14. lo = h,,.~,,,.,,.‘;.,,‘:14.~0:,,~.,i~ 

Lx1 =a 4, 5,8,9? a2 = x 10, 11.6.7, a3 = ‘Y 14,15,12,13r 

(iv) With all appropriate values of the parameters, 

&A 
h X.x’,m”l ‘,;,, “: h,,, ’ v 4; ,.YkO&,m = x , - 

I 

h x.,‘-?.,F,s 
0 G,- h x., 4.2 x,x’ 

I 

The transformation h is natural (the more usual terminology would be: strong) if 

each natural transformation h,,.Ys,J, I’ is an isomorphism. 

Consid%r saturated anamonoidal categories and anamonoidal functors between 

them: XG=$ A. A transformation h : F -+ G (in the sense of one between anafunctors 

of anabicategories) involves an anaobject h,, * of A. Let us take this to be I,, the unit 
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anaobject of A; let us call such transformations II nzonoidal. Then 

gives rise, via the identity isomorphisms, to /I,~, sI : F,(X) -+ G,,(X): 

indeed, we easily see that the resulting lower horizontal arrow is independent of the 

parameters u, h and 1~ Inspection shows that conditions 5 (iii) and (iv) reduce to the 

following: 

/I , i.e., h,,,,,, = k.,‘@,,ih,,,~ > 

with U = F(.s, t. u; a) and 6 = G (s’, t’, u’; a); and 

kl.,’ = ~A.r,ir,,,.~;~,.,,(:~.4.F,u.l, + I,,q,.,,,) 

(Here ~EJI,I,uEIFI(I~,,). c~lGl(I~,,); recall that F(u; i), G(c;i) E II,J.) 
When F and G are (monoidal) functors, these data and conditions further reduce to 

hA: FA --f GA, 

h.31 o,, B = hA 0 ~<a.<,<, hg> 

h,, = I,. rr. cr, 

Now, the mapping (5”) becomes an ismorphism ofcateyorie.s 

Hom(X,A)L Hom(X#,A#) 

between the category Hom(X.A) of monoidal functors X -+ A and monoidal natural 

transformations in the classical sense (see [4]), and the category Hom(X#,A#) of the 

monoidal functors between the saturations X’, A# and their monoidal transformations. 

4. The anabicategory of saturated anafunctors 

The saturated composition of two saturated anafunctors (or sanafunctors, for short) 

is obtained by saturating the ordinary composite introduced in Section 1. Since 
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saturation involves taking quotients of equivalence relations, it is natural to define the 

composite of sanafunctors up to isomorphism only, by allowing the quotients to be 

replaced by sets that are bijectively related to them. In this way, we get the meta- 

anabicategory SANACAT’ of categories and sanafunctors, and the anabicategory 

SanaCat# of small categories and (small) sanafunctors between them. From the point 

of view of the present paper, SanaCat# and SANACAT# seem to be the right 

universes for category theory. 

We now assemble the definition of SanaCat#, the anabicategory of small categories 

and saturated anafunctors, in explicit terms; the consideration of SANACAT” will be 

left to the reader. 

Recall that, for X, A small categories, Sana (X,A) denotes the category of sanafun- 

ctors from X to A and their natural transformations. With X, A and M arbitrary small 

categories, we define the composition anufunctor 

c = oX.AM: Sana(X,A) x Sana(A.M) --f Sana(X,M) (1) 

as follows. Recall the criterion for a “bi-anafunctor” stated in Section 1. after 1.13; 

according to this, we only have 

H E Sana (X, M), that is, 

x/A\ 
> 

H 

to define, for F E Sana (X, A), G E Sana(A,M) and 

(2) 
M 

the specification-sets ( 0 1 ((F, G), H) and the sections 

( ) 0 F : Sana (A,M) --f Sana (X,M), 

G 0 ( ) : Sana (X, A) + Sana (X, M), 

appropriately. 

(3) 

(4) 

For F E Sana (X, A), G E Sana (A, M) and H E Sana (X, M), 10 1 ((F, G), H) is defined as 

the set of all families SI = (~~)~~o,,,,~, of maps 

ax E n IHI (X3 G, F.5 X 1 
(.sEIFl(X),rtIGI(F.,X)J 

xx : (s E IFI (XL t E IGI (F.s Xl) w x.ds, t) E IHI (X> G, F, Xl. (5) 

such that M satisfies the following condition (i). 

(i) For all f:X ---f Y, ~E(FJ(X), t~lG/(F,x), u~lFl(Y), ZIEIGJ(F~Y), if 

a = ax (s, I), h = c(~ (u, L’), we have 

G,, v (F,, .(f)) = Ha, b (.I’). 

c[ as in (5) satisfying (i) is called a composition spec$cation (fbr “H = F J G”). 
Note that, under the notation of (i), H,(X) = (Go, F),(X) = G, F,7(X) when 

rx(s, t) = a. 
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We have that any composition specification c( for “H = F ‘j G” satisfies the following 

(ii) and (iii). 

(ii) For un!’ X E Oh(X), M ~0b(M), a E lHl(X,M) and SE IFIX, there is 

t E ICI (Fs X) such that M = G, F, X and xX(&t) = a. 
Indeed, take any v E IGJ (F, X), and let b = xx(s,v); since G is saturated, there is 

a (unique) t E IGI (Fs X, M) such that 

G,..,(lr<x) = H~u(lx):G,:Fsx --$ M. 

But then for II’ = c(~(s, I), by (i) we have Hh.a(lX) = Hh,“.(lX), which, since H is 

saturated, implies u’ = u. 

(iii) Fur all X, M, s, t, u, v such that G, F,S X = G,, F,X = M we have that 

xx(s,t) = ~x(u,v) #‘G,.,>F,,.(l.) = 1,. 
Indeed, by (ii), G,,,. F,. .(I,) = H,,(l,) with a = c(~(s, t), b = c(,(u, c); since H is 

saturated, H,,(l,) = 1, iff u = b. 

A purtial composition spec$cation for “H = G a F” is a family c( = (cI~)~~~~,~, 

of functions zx with domain dom(xx) c HI,, ,f,X IGI (F, X) = {(s, t): s E 1FI (X), 

t E IG( (F, X)) such that for any X E Oh(X), there are s E JF( (X), t E IGI (F, X) with 

(s, t) E dom(xx), and (i) holds for (s, t) E dom(cw,), (u, v) E dom(cx,). Any partial composi- 

tion specification can be uniquely extended to a complete one for the same relation 

“H = G ‘F”; given any u~lFl(X), c E IGJ(F,X), choose (s,t) as above, and define 

b = xx(u, c) so as to satisfy 

G,,V,..(l.)) = H,.tdlx); 

a unique such b exists because H is saturated. It is easy to verify that the full 

specification so defined, also denoted by a, will satisfy (i). 

To define the section (3), first of all, we have to show that I ) / ((F, G)) is inhabited (F 

and G as before). For H = Gq,F, with suitable M, we take (GnF)#; here Gg F is the 

composite as anafunctors in the sense of Section 1, and ( )” is the saturation functor. 

According to the definition of H = (G ~2 F)#, a typical element of IH) (X, M) is an 

equivalence class [(s, t, /l)] with s E IF I (X), t E JG) (F, X) and p : G, F, X -% M, where 

the underlying equivalence relation is defined by 

To define the composition specification (x, we put ~~(s,t) = [(s, t, lcCF,X)] (s E IFI X, 

t E 1GI (FSX)). With further data as in (i), the definition of H = (G” F)# gives that 

Hlc,.r.l,~.r,~,_l.l,l (.f) = G,., F.,,.(f); thus, (0 indeed holds. We have shown that I 3 I W, (3) 
is inhabited. 
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To define the effect of the section (3) on arrows. we take 

G' 
> 

and for G( E 1 ) ((F,G)), X'E 112 I ((F,G')), 
v,,~F:(G -,F) + (G' ,,F); 

that is, we determine the component 

we define 

(6) 

(1’ ?. 7’ F),,,,, : (G o F)o X 4 (G' ‘7. F),, X 

foranyaEIG a,FlX,a’~lG’ .~FIX.Hut,by(ii),wccantake.s~lFJX,t~JGJ(F,,.X), 

t’ E IG’] (F,, X), such that ax(s, t) = LL Y,~ (s, r’) = 11’; we define 

(V x,x,F),,,,,, = \I~.,‘: I G,F,X + G,, F, X. (7) 

If, instead of s, t, t’, we take U, I), L”, then by (ii), and the commutativity of 

(the naturality of v), we see that the same value is obtained in (7). We omit the 

verification that (6) so defined is a natural transformation, and that (3) so defined is an 

anafunctor. 

The definition of (4) is analogous; we get, for 

x+,x4 ’ >N, 

F’ 

(G ~z.,v)a.,, = G,,,(p,s,,,): G,F.,X-GF.,. X 

(c(~(.s, t) = u, xx(s’, U) = h). Finally, condition (ii) in the characterization of “bi” anafun- 

ctors is 
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which becomes, in components, 

G,t’,X & G,,F:..X 

G,.FJ G G,,.F:.X 
I’” 5\ 

which holds by the naturality of v. 

In fact, the composition anafunctor (1) is itself saturated. To see this, let H = G “,F 

and h : H -% K; by 1.9, h is given by bijections 

(a H ti):/G~,FI(X,M)~ IKI(X,M). 

We want to show that there is a unique p E ( 2 ) ((F, G), K) for which h = lGoa, a lF. For 

X E X, s E IFI X, t E IG ( (F, X), and A4 = G, F, X, let us define bx(.s, t) d% ax(s, t). We 

have that ,!I satisfies (i): with a,(~, t) = a, ux(u, u) = b, we have G,,F,,(f) = H,,(f) 
since a is a composition specification; but Hob (f) = &r;(f) by 1.9; the desired equality 

follows. 

Let u E IG”, F( (X, M). On the one hand, h,,, = 1, (see 1.9). On the other hand, 

choose (s, t) such that xx@, t) = u; then /I,&, t) = a, and ( lG =&, D lF)O,, = ( lG ox, I, F)a,B = 

( lG)l, t = lu. This shows that h,,, = (lG oa.D l,),,,,; since we have “enough” pairs of 

specifications (a, a) (see 1.7), it follows that h = lcsa.a lF. It is also clear that /I is 

uniquely determined. 

For any small category X, the identity sunujiinctor lx# :X -+ X, the saturation of the 

ordinary identity functor, has 11: I (X,X’) = Iso (X, X’), the set of all isomorphisms 

fromXtoX’,and,forf:X --f Y,i~llx#l(X,X’),j~llx#I(Y,Y’), 

(l,#)i,j(f) = jJfoi_‘:X’ + Y’. 

The identity anaobjects in SanaCat# are given by the ordinary objects 1:. 

We may make SanaCat* into a saturated anabicategory, by taking the saturation 
rl#T #. 

X . l-2 [X,X] to be the identity anaobject for X; we will not carry out this 

change. 

For F :X + A, the component &: 1; aa F-- F of the left identity isomorphism 
. . 
A = A,y .X,A . .l x”0,( )% 1 t.x,A1 is given (see 1.9) by the mappings 

~“[x,A]:(uE~lA#~F~(X,A))H(UE~F~(X,A)), 

one for each pair (X E Ob (X), A E Ob (A)), defined thus: if s E IFI X, i E 11,” I (F, X), 

a = (xx (s, i), then 5 is determined (through the saturatedeness of F) by the conditions 

F, X = A, F,y,(l,) = i; it is easy to see that this does define a H a uniquely, and the 

equality (see 1.9) (1,” ~3 F),.,(f) = F&.f) holds (f:X + Y, a E 11; ‘>FI (X), 

h E [ 1; 3 F I (Y)), showing that 2, is properly defined. The naturality of 2 has also to be 

checked. Similarly, we define the right identity isomorphisms. 



The associativity isomorphism 

2 = XXA..M.P: ‘,Y.A.P) 

has components (’ 

,( X..4..If x Pw+ ( x I.P) ,(Cx,~l x “AXP) 

x = ~,,,,;,,,:H..J~(G'~,F)~ (H ?G) ,>F 

(F E Sana (X,A), G E Sana (A.M), H E Sana (M, P), etc.), defined through the renaming 

transformation 3 given by the maps 

~[X,P]:(~E~H’~~(G’,F)I(X,P))~ (d~j(H : G) '3F)I(X,P)) 

(X E Ob (X), P E: Oh(P)) thus: if II = /I,Y(xx(.s, t). u), then 2 = b,(s, :qF,x(fr u)). 

I leave all verifications, including the associativity and identity coherences, to the 

reader. 

Extending 1.10, we have 

SanaCat# and AnaCat UIYJ eyuirrrlent as anuhicutegories. 

We have not given the notion of equivalence of anabicategories; the formulation of 

this notion, and the verification of the last-stated proposition are left to the reader. 

5 The effects of weak versions of the axiom of choice 

In the previous parts of the paper. we left open whether the bicategory AnaCat is 

Cartesian closed. In this section, we show that a very weak version of the AC, one that 

is consistent with the negations of most of the usual special cases of the AC, is 

sufficient to ensure that the said conclusion holds. 

This section is somewhat incomplete; since the first version of this paper was 

written, further, and partly better, results have been found, in a collaboration of 

Robert Pare and the author; it is planned that they will be described in [15]. On the 

other hand, it incorporates substantial improvements that were kindly communicated 

to me by the referee. 

In this section, we sometimes use classical logic; the marking (CL) indicates 

that the result in question depends on classical logic (the principle of excluded 

middle). 

For sets A, B, A g B abbreviates that there is a bijection AL B. I propose the 

following axiom of class-set theory. 

Small Cardinality Selection Axiom (SCSA). There is a class-function assigning, to 

each set A, a set 11 A 11 and a bijection i,4 : A z - /I A 11 such that, for each set B, the class 

{llAJl:A 2 B) is a set. 

Of course, under the Global AC (there is a class-function that assigns to each 

inhabited set a member of that set), and by using classical logic (whose validity is 



a consequence of the AC, by the well-known argument of R. Diaconescu (see [9, 5.23, 

p. 141) we have the SCSA in the strong form when (B) = ((IA 11 : A 2 B} is a singleton; 

now, (lAl( is the usual cardinality of A; the global version of choice is needed for the 

function A H I~. 

As the referee has pointed out, and as will be explained below, the SCSA is related 

to Blass’ Axiom of Small Violations of Choice (SVC) (see [3, Section 4., p. 411). This 

axiom is as follows. 

SVC. There is a set S such that, for every set A, there exists an ordinal x and a function 

from a subset of S x x onto A. 

The following global version of the SVC was also pointed out by the referee, 

although it appeared implicitly in the first version of this paper, as a fact about the 

universe of sets constructible from a fixed set. 

GSVC. There are a set S and a class-function mapping S x Ord onto V, the class of all 

sets. 

In [3], Blass shows that the SVC is a “very weak form of the axiom of choice”. It 

holds in L(T), the universe of sets constructible over an arbitrary transitive set 

T (T E L (T)), and it holds in HOD(T), the universe of hereditarily ordinal definable 

sets over T, for an arbitrary set T (use T as a single additional parameter, in addition 

to ordinals, in definitions of members of HOD (T)). Moreover, it holds in P. Cohen’s 

symmetric models, derived from generic models, used by Cohen to show the indepen- 

dence of the AC. Any of these facts show that SVC is consistent with the negation of 

any of a certain class of special cases of the AC; such a special case, call it AC*, may 

e.g., be the statement that there is a well-ordering of the set of all reals. If we have 

a model M of set-theory in which AC* fails, then there is a (transitive) set T “respon- 

sible” for this failure (the transitive closure of [w in the example), and L(“)(T), that is, 

L(T) taken relative to M, will also exhibit the failure of AC*; but L’“’ (T) satisfies the 

svc. 

On the other hand, Blass shows the independence of SVC from ZF by a forcing 

argument using a proper class of forcing conditions. 

All the mentioned results of Blass seem to have straightforward variants for the 

GSVC; in the first version of this paper, a detailed proof was given of the fact that 

L(T), with T a transitive set, satisfies the GSVC. 

The next result, the fact that the GSVC implies the SCSA, is due to the referee. In 

the first version of the paper, I had the weaker result that, assuming that the AC holds 

in V, we have that any standard model of G-B satisfying the GSVC also satisfies the 

SCSA. 

1. (CL) The GSVC implies rhr SCSA. 
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Proof. Let, by the GVSC, S be a set and E: S x Ord -++ V a surjection. For any a E V, 
let pa be the least ordinal p for which {s E S: E(s, p) = u} # 8, and let j(u) = {s: s E S, 

E(s, pa) = a}; clearly, j(a) # 8. 
Let A be an arbitrary set. Define RA = (pa : a E A}, and let rc,, : RAA iA be the 

unique order-preserving bijection of RA (ordered as the ordinals are) onto an ordinal. 

Let IIA II = ((A4 n.4hJ) : a E A ), and iA:A + IlAll be given by iA = (j(u),rrA(po)). 

Note that IIAll c S x Aa. Clearly, iA is a surjection. But if u,h E A and iA = iA( 

then pa = p,,, and picking any s E j(a) = j(b), we have that a = E(s, pa) = E(s, pb) = h; 

this shows that iA is also an injection, and thus a bijection, iA: AA /IA/i. 

Let B be an arbitrary set. The class C of ordinals that can be mapped into Y(B) in 

a 1- 1 way is a set (Hartog’s theorem), since the mapping with domain the set Y@” of all 

well-orderings (W, < w) of subsets W of Y(B), assigning to (W, < w) the order-type 

of (W, < ,+,), is a surjection $fl:‘ + C. Thus, there exist ordinals that cannot be mapped 

l-l into P(B); let CI be any, e.g. the least, such. 

I claim that for any A such that A z B, we have that IIA 11 c S x 2. Once this is 

shown, we obviously have that (B) = {l/A 1) : A z B) is a set as required. 

Iff: B + c( is a surjection, then the map 5 w,f- ’ (<) : x + P(B) is 1-1; it follows 

that B cannot be mapped surjectively onto r. But if 9: B z A, then we have 

and if also i, 2 CI, then (c( # 8) iA, and hence also B, can be mapped surjectively onto 

rx. It follows that if A r B, the jkA < x. Therefore, if A z B, then 11 AlI c S x iA c S x a 

as desired. 

As a consequence of 2 and remarks made earlier, we have, e.g., that 

2. (CL) For an arbitrary trunsitizle set T, L (T)^ is a model of G-B + SCSA. In fact, 

the class-function witnessing the SCSA con be chosen to be a dejinuble class (that is, 

definable with parameters in the structure (X, E IX),for X = L (T)). 

We turn to the effect of SCSA on anafunctors. 

3. (SCSA) (Assume the SCSA.) For any small categories X, A, there is a small full 

subcutegory A(X, A) of Sana(X, A) such that the inclusion A(XA) -+ Sana(X,A) is an 

equivalence qf categories. 

Proof. We use the notation of the statement of the SCSA; we write (B) for 

{IlAli : A g B}. Let r be the set of all sets 9 for which there are a subset S of 

Oh(X) x Oh(A) and a function @ E n(X,A)tS (Iso (A, A)) (Iso (A, A) is the set of all 

isomorphisms AL+ A in A)) such that 9 is of the form 

Y= u @(X,A), {((X,A),U):UE@(X,A);; 
(X,A)tS 
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indeed, it is clear that r is a set. The class (in fact, set) of objects of A (X,A) is defined to 

be the set of sanafunctors (saturated anafunctors) G:X + A such that IGl, the set of 

specifications of G, belongs to r. Since r is a set, and X,A are small, it is clear that the 

class of sanafunctors described is a set ; A(X,A), a full subcategory of Sana(X,A), is 

small. 

To show that the inclusion A (X+4) + Sana (X,A) is an equivalence, we exhibit, for 

any F E Sana (X,A), a sanafunctor [[FJ E A (X,A) and an isomorphism rF : F -% [Fl. 
Let F be given. Remember that, since F is saturated, JF) (X, A) z Iso (A, A) and hence, 

lllFl(X,A)ll E (Iso(A,A)) whenever XEX, A EA and IFJ (X,A) is inhabited (see 

section 1, (2’)). We put 

S = ((X, A) E Oh(X) x Oh(A): IF1 (X, A) is inhabited), 

IIIFII = u II lFlW,A)lI; 
(X.A,ES 

this ensures that l[Fll E r, and thus, once [IFI is fully defined, that [Fj E A(X,A). 

Note that we have 

IITFII = n II IFI (X> A)ll; (1) 
XEX.AEA 

this holds because, in general for any family (Ci: i E I) of sets, 

u Cc = u iCi : i E I, Ci is inhabited]. 
it1 iaI 

Continuing with the definition of IF’], we put, for (X,A) E S, u E IF I (X,.4), 

Oijfij ((X,A),u) = X, T[q ((X,A),u) = A. 

It follows by (1) that 

IilFjI (X,.4) = {((x,A),4:u~ II IFI(X,~)ll) 

for any X E Oh(X), A E Oh(A). 

We define the natural transformation I~ via a renaming transformation iF : F A [F 1; 
the mapping 

iI:[X,A]:jFJ(X,A)2-t \[Fjl(X,Y) 

is defined by 

IF LX, Al(c) = ((X3 A), ~,F,IX.A,(~))3 

with 1 ,F,,X,A,:IFI(X,A) -+ lIlFl(X,A)ll being given by the SCSA. Theeffect of [Fj on 

morphisms is thereby determined: we put 

1Flli,,(f‘) = F\.,(.f) 

wheneverf’:X + Y, SEIFIX, ~EIFIY, i=iF [X,A](s), f-1; [Y,A](t). It is clear 

that the sanafunctor [Fjj and the natural isomorphism rF: F$ [Fj are thus well 

defined; and as we said above, it follows that [Fl E A(X,A). 



4. (SCSA) For any small cateyoric.s X,A, thrre is II ,smullfill subcategory A(X,A) qf 

Ana (X, A) such thut the inclusion A (X. A) + Ana (X,A) is an equivalence ofcategories. 

Proof. Combine 3 with 1.10. 

The main result of this section is that, under the SCSA, AnaCat is Cartesian closed. 

In a natural way, in any bicategory, we say that AX is an exponentid of (X, A), with 

enaluation e: X x AX + A, if for any object Y, the functor 

(Xx( )) ,e:Hom(Y,A”) + Hom(Xx Y,A) 

Y~AXw(XxY=h’xAX~A) 

is an equivalence of categories; a bicategory is Curtesiun closed if it is Cartesian and 

has exponentials of all pairs of objects. 

5. (SCSA) AnaCat is Curtesiun closed. 

Proof. By 1.18, Anacat is Cartesian, with the product structure computed as in Cat. 

1.14 and 4 imply that exponentials exist; in fact, A (X,A) will act as an exponential AX 

in Anacat, with evaluation morphism e: X x A(X,A) -+ A the restriction to 

Xx A(X,A) of the map defined in (8). (8’) and (9) in section 1. 

Since Sanacat is equivalent (as a bicategory) to AnaCat (1.12’), we have 

6. (SCSA) SanaCat is Ctrrtcsiun clo.sed. 

Terminal object, product and exporzerztiation in an anabicategory are defined by 

modifying the definitions for bicategories. In a anabicategory, we say that 

A *CA B is a product diugrurn if, for any object D, the anafunctor 

(TC~J( -),~‘d( =)):Hom(D,C) + Hom(D,A)xHom(D,B) 

is an anaequivalence of categories. To emphasize the possibly obvious, here 

7r’~m( - ): Horn (D, C) + Horn (D, A) is the section of the composition anafunctor 

11~. c, A : Horn (D, C) x Horn (C, A) + Horn (D, A) 

at 7~ E Horn (C, A); or what is the same, the composite of ~1~. c, A with 

Horn (D, C) x rzl : Horn (D, C) x 1 + Horn (D, C) x Horn (C, A). 

AX, with e:XxAX -+ A (eculuation), is an rxponential of (X, A) if for any Y, the 

anafunctor 

(Xx( -)),Je:Hom(Y,A”) + Hom(Xx Y,A) 

is an anaequivalence of categories. 
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T is a ternzinul object if, for any A, Hom(A, T) + 1, with 1 the one-object, 

one-arrow category, is an anaequivalenc of categories. 

An anabicategory .3 is Curtesiun if it has a terminal object, and binary products of 

arbitrary pairs of objects, and it is Curtesian closed if, in addition, it has exponentials. 

The definitions of the concepts involved are straightforward versions of the corres- 

ponding definitions for bicategories. 

7. (SCSA) SanaCat# is Cartesian closed. 

The proof, whose details I leave to the reader, is based on the fact that the identity 

mapping is an equivalence of anabicategories between SanaCat# and SanaCat, the 

latter understood as an anabicategory, and on the fact that the Cartesian closed 

character of an anabicategory is invariant under equivalences. Although the notion of 

“equivalence of anabicategories” has not been explicitly stated, the reader will not find 

it difficult to complete the proof. 

Let me mention that the main result 5 holds with the SCSA replaced by Blass’ SVC. 
The proof involves a weaker version of the SCSA, which is a consequence of the SVC, 

and suffices for the conclusion of 5. This weaker version of SCSA, will be discussed in 

the context of indexed category theory over a topos in [lS]. The interest of the said 

variant of SCSA is heightened by the fact that it holds in all Grothendieck toposes, 

whereas direct topos-theoretic translates of SVC do not. 

To end the paper, we will consider consequences of the Axiom of Regularity. 

Actually, only a consequence having the form of a weak version of the Axiom of 

Choice of the said axiom is used; this consequence I call the 

Axiom of Hierarchy (AH). There is a family (1/,:x E Ord) of sets indexed by the 

ordinals whose union UIE,,rd V, is the class of all sets. 

As is well known, the AH is made true by the Axiom of Regularity through the 

von-Neumann hierarchy (V, : x E Ord) of pure (regular) sets. In what follows, we will 

assume the AH, and also the validity of classical logic. 

The AH gives a metafunction assigning to any class A a subset A c A such that if 

A is non-empty, then so is 2; if A is non-empty, A = AnI’, for c( the least c( for which 

Anl/, # 0, A = 0 otherwise. Combined with the GAC, we have a meta-choice- 

function, assigning to every non-empty class an element of it. Therefore, using the 

proof of 1 .l 1, we can conclude the following strengthening of 1.11: 

8. (GAC, AH) Thr inclusion FUN(X,A) + ANA(X,A) is un equivalence of metu- 

ciltqories. 

(This was observed by the referee, correcting a careless statement I originally made.) 
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9. (AH,CL) The inclusion ANA,,,(X,A) -+ ANA (X,A) is an equivalence of meta- 

categories. In particular, if X is a smull ccltegory, the inclusion Ana (X,A) -+ 

ANA (X, A) is an equivalence of metacutegories. 

Indeed, given any F E ANA(X,A ), define FE Ana(X,A) by IF1 X = (IFI X)- (with 

the latter ( )- understood as in A t-t 2 above), and otherwise restricting the data of 

F appropriately; 1.1 (iii) for F is ensured by the construction, and all other laws of 

“anafunctor” are automatically true for F. We have the natural isomorphism 

h: FL F whose components h,Y, ,s for s E /F/(X, .4) ( c IF/(X, A)) are identities. 

We can now generalize, under the AH, 1.10 to obtain 

10. (AH, CL) The inclusion SANA(X,A) --, ANA (X,A) is an equivalence of meta- 

categories, provided A is locally smell. 

To see this, note that in the proof of 1.10, the construction F# is legitimate provided 

A is locally small, and F :X2+ A is weakly small; the class Sx, A introduced there is 

a set in this case, and we may consider the set of equivalence classes of the equivalence 

relation - on Sx,a as needed there. (Note, however, that F# constructed is not 

necessarily weakly small.) We obtain the functor ( )# : ANA,,(X,A) -+ SANA(X,A) 

such that for every F E ANA,,Y (X, A), F 2 F# with a canonical isomorphism; that is, in 

L=( )@ K 

SANA (X, A) ’ ANA (X, A) 

where I and J are inclusions, and K is the quasi-inverse of I given by 9, we have 

Ja( )” EZ. But then 

J’>L E Jc)( )“oK z I K 2 Id. (2) 

and 

J,>Ls>J=J>( )#sKoJrl K JgJ=J Id, 

which, since J is full and faithful, implies that 

LaJ E Id. 

(2) and (3) show what we want. 

As an immediate consequence of 9 and 2.6, we have 

(3) 

11. (AH, CL) Suppose that the cutegory A has smull limits, and X is a small category. 

Then ANA(X,A) and Ana (X,A) huce specified smlrll limits. 
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Note added in proof 

After the completion of this paper, G.M. Kelly drew my attention to his paper 

“Complete functors in homology I. Chain maps and endomorphisms” (Proc. Cam- 

bridge Phil. Sot. 60 (1964) 721-735). In Section 2, “Generalities on functors”, on page 

723, he gives a concept, without naming it, which is identical to that of “anafunctor”. 

He gives the definition in both forms as in 1.1 and l.l* of the present paper. He 

presents the concept as the general form the available data for a functor often take; in 

such cases, converting the data into a functor requires the class-form of the Axiom of 

Choice. He does not attempt to develop a theory of such data; however, he does say: 

“one who will not admit such choices [requiring the Axiom of Choice] may work with 

the pair of honest functors S, T [in the span-style definition of “anafunctor”] in place 

of the dishonest functor . .“. Thus, the present paper is a working-out of a thirty-year 

old idea of Max Kelly’s. 
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